Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592


You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Microcellular poly(hydroxybutyrate-co-hydroxyvalerate)-hyperbranched polymer-nanoclay nanocomposites

Source: POLYMER ENGINEERING AND SCIENCE, 51. pp. 1815-1826

Author(s)Javadi, Alireza; Srithep, Yottha; Pilla, Srikanth; Clemons, Craig C.; Gong, Shaoqin; Turng, Lih-Sheng

Publication Year: 2012  View PDF »

Category: Journal Articles
Associated Research Project(s):   FPL-4706-2A

Abstract: The effects of incorporating hyperbranched polymers (HBPs) and different nanoclays [Cloisite® 30B and halloysite nanotubes (HNT)] on the mechanical, morphological, and thermal properties of solid and microcellular poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) were investigated. According to the X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses, Cloisite 30B exhibited a combination of exfoliation and heterogeneous intercalation structure for both solid and microcellular PHBV-12% HBP-2% Cloisite 30B nanocomposites. TEM images indicated that HNTs were uniformly dispersed throughout the PHBV matrix. The addition of 2% nanoclays improved the thermal stability of the resulting nanocomposites. The addition of HBP+poly(maleic anhydride-alt-1-octadecene) (PA), Cloisite 30B, and HNT reduced the average cell size and increased the cell density of the microcellular components. The addition of (HBP+PA), Cloisite 30B, and HNT also increased the degree of crystallinity for both solid and microcellular components in comparison with neat PHBV. Also, with the addition of 12% (HBP+PA), the area under the tan-δ curve, specific toughness, and strain-at-break of the PHBV–HBP nanocomposite increased significantly for both solid and microcellular specimens, whereas the storage modulus, specific Young’s modulus, and specific tensile strength decreased. The addition of 2% nanoclays into the PHBV–HBP nanocomposites improved the storage modulus, specific Young’s modulus, and specific tensile strength of the PHBV–HBP–nanoclay-based nanocomposites, but they were still lower than those of the neat PHBV.

Keywords: Nanoclay; Biopolymer; HPBV; Microcellular; hyperbranched polymer

Publication Review Process: Formally Refereed

File size: 1,905 kb(s)

Date posted: 09/17/2012

This publication is also viewable on Treesearch:  view
RITS Product ID: 61418
Current FPL Scientist associated with this product
Clemons, Craig M.
Materials Research Engineer

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »

Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »

Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »

Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »