Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592


You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Biosorbents prepared from wood particles treated with anionic polymer and iron salt: Effect of particle size on phosphate adsorption

Source: Bioresource Technology Vol. 99 Issue 3, 2008 626?630

Author(s)Eberhardt, Thomas L.; Min, Soo-Hong

Publication Year: 2008  View PDF »

Category: Not Classified

Abstract: Biomass-based adsorbents have been widely studied as a cost-effective and environmentally-benign means to remove pollutants and nutrients from water. A two-stage treatment of aspen wood particles with solutions of carboxymethyl cellulose (CMC) and ferrous chloride afforded a biosorbent that was effective in removing phosphate from test solutions. FTIR spectroscopy of the biosorbent samples showed a decrease in the intensity of the carboxylate signal coinciding with a decrease in particle size. Elemental analysis results showed the iron content of both the biosorbent samples, and wood particles treated with ferrous chloride alone, to also decrease with particle size. The relationship between iron content and particle size for the biosorbent samples appeared to be a function of both the amount of CMC?Fe complex and the effciency of removing free iron ions after treating. Sorption testing results showed a strong linear correlation between the phosphorous uptake capacities and the iron contents of the samples adjusted for losses of iron during testing. As anticipated, pretreating with the anionic polymer provided additional sites to complex iron and thereby imparted a greater phosphorous uptake capacity. Although the larger wood particles provided a greater amount of iron for phosphate removal, smaller wood particles may be preferred since they afforded the lowest release of iron relative to the amount of phosphate removed.

Keywords: Adsorption; Biomass; Biosorbent; Carboxymethyl cellulose; Phosphate

File size: 196 kb(s)

Date posted: 12/22/2008

This publication is also viewable on Treesearch:  view
RITS Product ID: 29301

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »

Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »

Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »

Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »