Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592
Email

 

You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Data-Driven Design Optimization for Composite Material Characterization

Source: Journal of Computing and Information Science in Engineering JUNE 2011, Volume 11.

Author(s)Michopoulos, John G.; Hermanson, John C.; Iliopoulos, Athanasios; Lambrakos, Samuel G.; Furukawa, Tomonari

Publication Year: 2011  View PDF »

Category: Journal Articles
Associated Research Project(s):   FPL-4714-2A

Abstract: The main goal of the present paper is to demonstrate the value of design optimization beyond its use for structural shape determination in the realm of the constitutive characterization of anisotropic material systems such as polymer matrix composites with or without damage. The approaches discussed are based on the availability of massive experimental data representing the excitation and response behavior of specimens tested by automated mechatronic material testing systems capable of applying multiaxial loading. Material constitutive characterization is achieved by minimizing the difference between experimentally measured and analytically computed system responses as described by surface strain and strain energy density fields. Small and large strain formulations based on additive strain energy density decompositions are introduced and utilized for constructing the necessary objective functions and their subsequent minimization. Numerical examples based on both synthetic (for one-dimensional systems) and actual data (for realistic 3D material systems) demonstrate the successful application of design optimization for constitutive characterization.

Keywords: Mathematical optimization; composite materials; mechanics; forest products industry; mathematical models; research; forest products research; technological innovations; testing machines; design; testing; mechatronics; loads; strains; stresses; performance testing; testing machinery; mechatronic systems; multiaxial testing; design optimization; material characterization; constitutive response; anisotropic materials; polymer matrix composites; multiaxial testing; full-field methods

Publication Review Process: Formally Refereed

File size: 1 kb(s)

Date posted: 11/08/2011

This publication is also viewable on Treesearch:  view
RITS Product ID: 39448
Current FPL Scientist associated with this product
Hermanson, John C.
Research General Engineer
  

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »


Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »


Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


Nanotechnology

A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »


Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »