Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592


You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Combining hygrothermal and corrosion models to predict corrosion of metal fasteners embedded in wood

Source: Building and Environment, 46 (2011) 2060-2068. doi:10.1016/j.buildenv.2011.04.017

Author(s)Zelinka,Samuel L.; Derome, Dominique; Glass, Samuel V.

Publication Year: 2011  View PDF »

Category: Journal Articles
Associated Research Project(s):   FPL-4723-1

Abstract: A combined heat, moisture, and corrosion model is presented and used to simulate the corrosion of metal fasteners embedded in solid wood exposed to the exterior environment. First, the moisture content and temperature at the wood/fastener interface is determined at each time step. Then, the amount of corrosion is determined spatially using an empirical corrosion rate model and the inputs of the first step. The result is a corrosion profile along the length of the fastener generated by summing the corrosion depths determined at each time step. We apply the combined model to predict the annual corrosion depth along a metal fastener in wood decks situated in nine different US cities. Corrosion profiles are found to exhibit the same general shape independently of climatic load, with the largest amount of corrosion occurring at 1-5 mm from the wood surface with corrosion depths ranging from 5 μm in Phoenix, Arizona to 45 μm in Hilo, Hawaii. Corrosion is confined to the first 7-20 mm of the fastener below the wood surface. By varying the climatic loads, we find that although there is a definite relation between total annual rain and total annual corrosion, under the same rain loads corrosion is higher for a climate with more evenly distributed rain events. The proposed combined model is able to capture corrosion behavior under varying loading. A sensitivity analysis gives guidelines for future corrosion modeling work for fasteners in wood.

Keywords: Metals; testing; corrosion; anti-corrosives; fasteners; joints; wood preservatives; chemical reactions; moisture; wood moisture; service life; accelerated life testing; temperature; decks; rain; precipitation; climatic zones; computer simulation; connectors; tests; treated wood; preservative treated wood; exposure tests; moisture content; accelerated testing; durability; hygrothermal modeling

Publication Review Process: Formally Refereed

File size: 990 kb(s)

Date posted: 10/25/2011

This publication is also viewable on Treesearch:  view
RITS Product ID: 41612
Current FPL Scientists associated with this product (listed alphabetically)
Glass, Samuel V.
Research Physical Scientist
Zelinka, Samuel L.
Materials Research Engineer

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »

Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »

Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »

Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »