Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592
Email

 

You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Restructuring the Crystalline Cellulose Hydrogen Bond Network Enhances Its Depolymerization Rate

Source: J. Am. Chem. Soc. 2011, 133, 11163-11174; 2011

Author(s)Chundawat, Shishir P.S.; Belesia, Giovanni; Uppugundla, Nirmal; Sousa, Leonardo da Costa; Gao, Dahai; Cheh, Albert M.; Agarwal, Umesh P.; Bianchetti, Christopher M.; Phillips, Jr., George N.; Langan, Paul; Balan, Venkatesh; Gnanakran, S.; Dale, Bruce E.

Publication Year: 2011  View PDF »

Category: Journal Articles
Associated Research Project(s):   FPL-4709-1A

Abstract: Conversion of lignocellulose to biofuels is partly inefficient due to the deleterious impact of cellulose crystallinity on enzymatic saccharification. We demonstrate how the synergistic activity of cellulases was enhanced by altering the hydrogen bond network within crystalline cellulose fibrils. We provide a molecular-scale explanation of these phenomena through molecular dynamics (MD) simulations and enzymatic assays. Ammonia transformed the naturally occurring crystalline allomorph Iβ to IIII, which led to a decrease in the number of cellulose intrasheet hydrogen bonds and an increase in the number of intersheet hydrogen bonds. This rearrangement of the hydrogen bond network within cellulose IIII, which increased the number of solvent-exposed glucan chain hydrogen bonds with water by ∼50%, was accompanied by enhanced saccharification rates by up to 5-fold (closest to amorphous cellulose) and 60-70% lower maximum surface-bound cellulase capacity. The enhancement in apparent cellulase activity was attributed to the ″amorphous-like″ nature of the cellulose IIII fibril surface that facilitated easier glucan chain extraction. Unrestricted substrate accessibility to active-site clefts of certain endocellulase families further accelerated deconstruction of cellulose IIII. Structural and dynamical features of cellulose IIII, revealed by MDsimulations, gave additional insights into the role of cellulose crystal structure on fibril surface hydration that influences interfacial enzyme binding. Subtle alterations within the cellulose hydrogen bond network provide an attractiveway to enhance its deconstruction and offer unique insight into the nature of cellulose recalcitrance. This approach can lead to unconventional pathways for development of novel pretreatments and engineered cellulases for cost-effective biofuels production.

Keywords: Chemical reactions, biomass, utilization, cellulose, chemistry, crystallization, chemical composition, biomass energy, biotechnology, enzymes, industrial applications, lignocellulose, biodegradation, cellulase, hydrogen, ammonia, glucans, feedstock, pretreatment, hydrolysis, Trichoderma reesei, fungi, decay fungi, depolymerization, polymers, polymerization, crystalline cellulose, crystallinity, biorefining, bioconversion, biofuels, saccharification, kinetics

Publication Review Process: Formally Refereed

File size: 1 kb(s)

Date posted: 09/07/2011

This publication is also viewable on Treesearch:  view
RITS Product ID: 39271
Current FPL Scientist associated with this product
Agarwal, Umesh P.
Research Chemist
  

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »


Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »


Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


Nanotechnology

A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »


Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »