Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592
Email

 

You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Effects of wet-pressing-induced fiber hornification on enzymatic saccharification of lignocelluloses

Source: Cellulose (2011) 18:1055-1062; 2011

Author(s)Luo, X.L.; Zhu, J.Y.; Gleisner, R.; Zhan, H.Y.

Publication Year: 2011  View PDF »

Category: Journal Articles
Associated Research Project(s):   FPL-4709-1A

Abstract: This article reports the effect of wetpressing-induced fiber hornification on enzymatic saccharification of lignocelluloses. A wet cellulosic substrate of bleached kraft eucalyptus pulp and two wet sulfite-pretreated lignocellulosic substrates of aspen and lodgepole pine were pressed to various moisture (solids) contents by variation of pressing pressure and pressing duration. Wet pressing reduced substrate moisture content and produced irreversible reduction in fiber pore volume-fiber hornification-as reflected in reduced water retention values (WRVs), an easily measurable parameter, of the pressed substrates. Wet pressing resulted in a reduction in substrate enzymatic digestibility (SED) by approximately 20% for the two sulfite-pretreated substrates when moisture content was reduced from approximately 75% to 35%. The reduction in SED for the cellulosic substrate was less than 10% when its moisture content was reduced from approximately 65% to 35%. The results indicated that reduction in SED is neglgible when samples were pressed to solids content of 40% but observable when pressed to solids content of 50%. It was also found that WRV can correlate to SED of hornified substrates resulting from the same never-dried or pressed sample independent of the hornification process (e.g., pressing or drying). This correlation can be fitted using a Boltzmann function. Cellulase adsorption measurements indicated that wet-pressing-induced fiber hornification reduced cellulose accessibility to cellulase. The results obtained in this study provide guidelines to high-solids enzymatic saccharification of pretreated biomass.

Keywords: Biomass energy, biomass, biotechnology, feedstock, pretreatment, lignocellulose, biodegradation, hydrolysis, enzymes, industrial applications, cellulose, sulfate pulping process, ethanol, Eucalyptus, aspen, lodgepole pine, wood chips, pulping, moisture, cellulase, adsorption, wet pressing, SPORL, biomass fuel, bioconversion, biorefining, wood extractives, chemical utilization, saccharification, chips, pulp and paper processes, hornification, alcohol, lodgepole pine, water retention ratio, WRV, moisture content, high solids enzymatic hydrolysis/saccharification, fibers, water retention value

Publication Review Process: Formally Refereed

File size: 484 kb(s)

Date posted: 07/29/2011

This publication is also viewable on Treesearch:  view
RITS Product ID: 39268
Current FPL Scientist associated with this product
Zhu, JunYong
Research General Engineer
  

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »


Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »


Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


Nanotechnology

A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »


Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »