Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592
Email

 

You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Eliminating inhibition of enzymatic hydrolysis by lignosulfonate in unwashed sulfite-pretreated aspen using metal salts

Source: Bioresource Technology, 101 (2010) 9120-9127. doi:10.1016/j.biortech.2010.07.035; 2010

Author(s)Liu, Hao; Zhu, JunYong

Publication Year: 2010  View PDF »

Category: Journal Articles
Associated Research Project(s):   FPL-4709-1A

Abstract: This study demonstrated the efficiency of Ca(II) and Mg(II) in removing inhibition of enzymatic hydrolysis by lignosulfonate through non-productive adsorption of enzymes. Adding 1 mmol/g cellulose of either metal salt restores approximately 65% of the activity lost when a pure cellulose/cellulase solution is spiked with lignosulfonate. Addition of either Ca(II) or Mg(II) is also effective in counteracting soluble inhibitors of cellulase present in unwashed aspen solid substrate produced by SPORL (sulfite pretreatment to overcome recalcitrance of lignocelluloses). Soluble inhibitors are often removed by thoroughly washing the lignocellulosic solid substrate following pretreatment. It was determined that adding 1 mmol of MgSO4/g substrate (oven dry) to the unwashed aspen substrate gave enzymatic substrate digestibility (SED) equivalent to that of washing for a range of enzyme loadings. These results demonstrate that applying divalent metal salts eliminates the need for washing, thereby saving considerable process water and cost for production of chemicals and biofuels from lignocellulose.

Keywords: Fuelwood, biomass energy, biomass, utilization, biotechnology, pretreatment, lignocellulose, biodegradation, cellulose, hydrolysis, enzymes, industrial applications, calcium, adsorption, cellulase, aspen, magnesium, lignosulfonates, salts, metals, water conservation, Populus, SPORL, biomass fuel, bioconversion, biorefining, wood extractives, chemical utilization, saccharification, delignification

Publication Review Process: Formally Refereed

File size: 524 kb(s)

Date posted: 11/15/2010

This publication is also viewable on Treesearch:  view
RITS Product ID: 36410
Current FPL Scientist associated with this product
Zhu, JunYong
Research General Engineer
  

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »


Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »


Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


Nanotechnology

A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »


Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »