Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592


You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Determination of native (wood derived) formaldehyde by the desiccator method in particleboards generated during panel production

Source: Holzforschung,Vol.64,pp.429-433,2010

Author(s)Birkeland, Michael J.; Lorenz, Linda; Wescott, James M.; Frihart, Charles R.

Publication Year: 2010  View PDF »

Category: Journal Articles
Associated Research Project(s):   FPL-4707-2A

Abstract: Hot-pressing wood, particularly in the production of wood composites, generates significant 'native' (wood-based) formaldehyde (FA), even in the absence of adhesive. The level of native FA relates directly to the time and temperature of hot-pressing. This native FA dissipates in a relatively short time and is not part of the long-term FA emission issue commonly associated with hydrolyzing urea-formaldehyde bonds. This paper demonstrates that the common desiccator/ chromotropic acid method is very specific for FA and is not influenced by other volatile compounds set free from wood during hot-pressing. Furthermore, it is shown that particleboard produces native FA at high levels even in the absence of adhesives or in the presence of one type of no-added formaldehyde (NAF) adhesive. Soy-based adhesives suppress native FA emission and provide low FA emission levels in both the short and long term. This study highlights an often overlooked aspect that should be considered for emission testing: standardizing the time and conditions employed immediately after pressing and prior to the onset of emissions testing. Addressing this issue in more detail would improve the reliability of correlation between data obtained by rapid process monitoring methods and emission measurements in large chambers.

Keywords: Adhesives, environmental analysis, formaldehyde emission, no-added formaldehyde (NAF) adhesive, soy-based adhesives, wood adhesion, formaldehyde, particle board, heat treatment, soy flour, soybean glue, temperature, composite materials, hardboard, environmental monitoring, air pollution, measurement, desiccator method, bonding, chromotropic acid method, emissions, hot pressing, composite wood

Publication Review Process: Formally Refereed

File size: 196 kb(s)

Date posted: 07/15/2010

This publication is also viewable on Treesearch:  view
RITS Product ID: 35736
Current FPL Scientist associated with this product
Frihart, Charles R.
Research Chemist

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »

Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »

Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »

Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »