Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592


You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Evaluating Physical Property Changes for Small-Diameter, Plantation-Grown Southern Pine after In Situ Polymerization of an Acrylic Monomer

Source: Forest Prod. J. 59(10):64-71.

Author(s)Bergman, Richard; Ibach, Rebecca E.; LaPasha, Constatine; Denig, Joseph

Publication Year: 2009  View PDF »

Category: Journal Articles
Associated Research Project(s):   FPL-4707-2A  FPL-4851-6A

Abstract: Because of the large percentage of juvenile wood in small-diameter southern pine, this material has lower strength properties compared with the historic published values in the ASTM Standard D2555. Finding new, simple, and inexpensive ways of increasing these strength properties would increase the use of this material for residential construction. For this study, we chose in situ polymerization using the monomer 1,6-hexanediol dimethacrylate to enhance bending strength and stiffness. After determining the lower range of density, modulus of rupture (MOR), and modulus of elasticity (MOE) of juvenile wood from small southern pine logs, southern pine specimens were polymerized using both a vacuum-impregnation and a surface-application approach. The results showed some significant physical property increases for the fully impregnated material that used a large amount of monomer. Although the surface-application approach used less monomer, the physical properties of the juvenile wood did not increase as expected. Only the 1-minute dip treatment showed a significant increase in both bending stiffness and strength, with a weight gain of 11.9 percent. For the surface-application approach, monomer moving to the wood surface during polymerization reduced their effectiveness in increasing MOR and MOE to the expected levels. Therefore, the challenge is finding a method that maintains polymer loading inside the wood structure during the curing process.

Keywords: Composite materials, mechanical properties, elasticity, wood plastic composites, monomers, plastic-impregnated wood, deterioration, southern pines, bending, wood density, juvenile wood, polymers, polymerization, strength, wood-plastic materials, modulus of elasticity, impregnation, 1,6-hexanediol dimethacrylate, smallwood, bending strength, small-diameter timber, small timbers, stiffness

Publication Review Process: Formally Refereed

File size: 649 kb(s)

Date posted: 05/17/2010

This publication is also viewable on Treesearch:  view
RITS Product ID: 33646
Current FPL Scientists associated with this product (listed alphabetically)
Bergman, Richard
Research Forest Products Technologist
Ibach, Rebecca E.
Research Chemist

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »

Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »

Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »

Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »