Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592
Email

 

You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Climate in the Great Lakes Region between 14,000 and 4000 years ago from isotopic composition of conifer wood

Source: Radiocarbon. Vol. 48, no. 2 (2006): pages 205-217.

Author(s)Leavitt, Steven W.; Panyushkina, Irina P.; Lange, Todd; Wiedenhoeft, Alex; Cheng, Li; Hunter, R. Douglas; Hughes, John; Pranschke, Frank; Schneider, Allan F.; Moran, Joseph; Stieglitz, Ron

Publication Year: 2006  View PDF »

Category: Journal Articles

Abstract: The isotopic composition of ancient wood has the potential to provide information about past environments. We analyzed the 13C, 18O, and 2H of cellulose of conifer trees from several cross-sections at each of 9 sites around the Great Lakes region ranging from ~4000 to 14,000 cal BP. Isotopic values of Picea, Pinus, and Thuja species seem inter-changeable for 18O and 2H comparisons, but Thuja appears distinctly different from the other 2 in its 13C composition. Iso-topic results suggest that the 2 sites of near-Younger Dryas age experienced the coldest conditions, although the Gribben Basin site near the Laurentide ice sheet was relatively dry, whereas the Liverpool site 500 km south was moister. The spatial isotopic variability of 3 of the 4 sites of Two Creeks age shows evidence of an elevation effect, perhaps related to sites farther inland from the Lake Michigan shoreline experiencing warmer daytime growing season temperatures. Thus, despite floristic similarity across sites (wood samples at 7 of the sites being Picea), the isotopes appear to reflect environmental differences that might not be readily evident from a purely floristic interpretation of macrofossil or pollen identification.

Keywords: Cedar, climatic changes, Great Lakes Region, temperature, humidity, paleoclimatology, paleobiology, paleobotany, tertiary, fossil trees, radiocarbon dating, carbon, isotopes, pine, spruce, Thuja, conifers, dendroclimatology, Picea, Pinus

File size: 187 kb(s)

This publication is also viewable on Treesearch:  view
RITS Product ID: 20525
Current FPL Scientist associated with this product
Wiedenhoeft, Alex C.
Research Botanist
  

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »


Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »


Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


Nanotechnology

A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »


Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »