Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592


You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Production of polygalacturonase and increase of longitudinal gas permeability in southern pine by brown-rot and white-rot fungi

Source: Holzforschung. Vol. 53, no. 6 (1999).:p. 563-568 : ill.

Author(s)Green, Frederick, III.; Clausen, Carol A.

Publication Year: 1999  View PDF »

Category: Journal Articles

Abstract: Hydrolysis of bordered and pinoid pits may be a key event during colonization of wood by decay fungi. Although pits are numerous, studies of pectin-hydrolyzing enzymes in wood decay fungi are scarce, probably because of the relatively low content (less than 4 %) of pectin in wood and because of the primary focus on understanding the degradation of lignified components. Endopolygalacturonase (endo- PG) activity was estimated by cup-plate assay and viscosity reduction of pectin from liquid cultures of fifteen brown-rot and eight white-rot basidiomycetous fungi using sodium polypectate as the carbon source. Oxalic acid was estimated in liquid culture and related to mycelial weight of each fungus. Changes in longitudinal gas permeability of southern pine cores exposed to selected decay fungi in liquid culture were measured to determine the extent of hydrolysis of bordered pits. Twelve of fifteen brown-rot and six of eight white-rot fungi tested were positive for at least one of the polygalacturonase test methods. Accumulation of oxalic acid was detected in thirteen of fifteen brown-rot isolates and none of the white-rot fungi tested. Gas permeability of pine cores increased approximately fourfold among brown-rot fungi tested and eighteenfold among white-rot fungi tested. Scanning electron microscopy revealed bordered pit membrane hydrolysis in cores colonized by white-rot fungi, but only torus damage, weakening and tearing of the pit membranes, was observed in cores exposed to brown-rot fungi. We conclude that both brown- and white-rot decay fungi have the enzymatic capacity to hydrolyze pectin, damage bordered pit membranes, and increase wood permeability during colonization and incipient decay.

Keywords: Pinus; Polygalacturonase; Wood destroying fungi; Decay fungi; Permeability. ; Pits; Hydrolysis; Oxalic acid; Pectins; Enzymes

File size: 264 kb(s)

This publication is also viewable on Treesearch:  view
RITS Product ID: 20050
Current FPL Scientists associated with this product (listed alphabetically)
Clausen, Carol A.
Supervisory Research Microbiologist
Green, Frederick
Research Microbiologist

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »

Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »

Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »

Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »