Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592


You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Computational analysis of the Phanerochaete chrysosporium v2.0 genome database and mass spectrometry identiWcation of peptides in ligninolytic cultures reveal complex mixtures of secreted proteins

Source: Fungal genetics and biology. Vol. 43 (2006): pages 343-356.

Author(s)Vanden Wymelenberg, Amber; Minges, Patrick; Sabat, Grzegorz; Martinez, Diego; Aerts, Andrea; Salamov, Asaf; Grigoriev, Igor; Shapiro, Harris; Putnam, Nik; Belinky, Paula; Dosoretz, Carlos; Gaskell, Jill; Kersten, Phil; Cullen, Dan

Publication Year: 2006  View PDF »

Category: Journal Articles

Abstract: The white-rot basidiomycete Phanerochaete chrysosporium employs extracellular enzymes to completely degrade the major polymers of wood: cellulose, hemicellulose, and lignin. Analysis of a total of 10,048 v2.1 gene models predicts 769 secreted proteins, a substantial increase over the 268 models identified in the earlier database (v1.0). Within the v2.1 ‘computational secretome,' 43% showed no significant similarity to known proteins, but were structurally related to other hypothetical protein sequences. In contrast, 53% showed significant similarity to known protein sequences including 87 models assigned to 33 glycoside hydrolase families and 52 sequences distributed among 13 peptidase families. When grown under standard ligninolytic conditions, peptides corresponding to 11 peptidase genes were identified in culture filtrates by mass spectrometry (LS-MS/MS). Five peptidases were members of a large family of aspartyl proteases, many of which were localized to gene clusters. Consistent with a role in dephosphorylation of lignin peroxidase, a mannose-6-phospha-tase (M6Pase) was also identified in carbon-starved cultures. Beyond proteases and M6Pase, 28 specific gene products were identified including several representatives of gene families. These included 4 lignin peroxidases, 3 lipases, 2 carboxylesterases, and 8 glycosyl hydrolases. The results underscore the rich genetic diversity and complexity of P. chrysosporium's extracellular enzyme systems.

Keywords: Phanerochaete chrysosporium; secretion; secretome; proteome; gene cluster; proteins; lignocellulose; hemicellulose; gene expression; Basidiomycetes; wood-decaying fungi; enzymes; mass spectrometry; biodegradation; peptides; genomes; molecular genetics; fungi; industrial applications; wood decay; white rot

File size: 1 kb(s)

This publication is also viewable on Treesearch:  view
RITS Product ID: 13966
Current FPL Scientists associated with this product (listed alphabetically)
Cullen, Daniel
Research Microbiologist
Kersten, Philip J.
Research Microbiologist

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »

Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »

Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »

Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »