Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592
Email

 

You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: In-situ Raman microprobe studies of plant cell walls: macromolecular organization and compositional variability in the secondary wall of Picea mariana (Mill.) B.S.P.

Source: Planta. Vol. 169 (1986): Pages 325-332.

Author(s)Agarwal, U.P.; Atalla, R.H.

Publication Year: 1986  View PDF »

Category: Journal Articles

Abstract: Native-state organization and distribution of cell-wall components in the secondary wall of woody tissue from P. mariana (Black Spruce) have been investigated using polarized Raman microspectroscopy. Evidence for orientation is detected through Raman intensity variations resulting from rotations of the exciting electric vector with respect to cell-wall geometry. Spectral features associated with cellulose and lignin were studied. The changes in cellulose hands indicate that the pyranose rings of the anhydroglucose repeat units are in planes perpendicular to the cross section, while methine C-H bonds are in planes parallel to the cross section. Changes in bands associated with lignin indicate that the aromatic rings of the phenyl-propane units are most often in the plane of the cell-wall surface. However, regions where lignin orientation departs from this pattern also occur. These results represent direct evidence of molecular organization with respect to cellular morphological features in woody tissue, and indicate that cell-wall components are more highly organized than had been recognized. Studies carried out in order to establish the usefulness and sensitivity of the Raman technique to differences of composition within the cell walls provide evidence of variations in the distribution of cellulose and lignin. Such compositional differences were more prominent between the walls of different cells than within a particular cell wall.

Keywords: Cell wall structure, cellulose, Coniferae, lignin, Picea, Raman microprobe, orientation, spectrum analysis, black spruce, plant cell walls, Raman spectroscopy, ultrastructure, wood chemistry, cellulose chemistry,

File size: 130 kb(s)

This publication is also viewable on Treesearch:  view
RITS Product ID: 28562
Current FPL Scientist associated with this product
Agarwal, Umesh P.
Research Chemist
  

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »


Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »


Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


Nanotechnology

A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »


Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »