Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592


You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Dynamic fracture toughness of cellulose-fiber-reinforced polypropylene : preliminary investigation of microstructural effects

Source: Journal of elastomers and plastics. Vol. 31 (Oct. 1999).:p. 367-378 : ill.

Author(s)Clemons, Craig M.; Caulfield, Daniel F.; Giacomin, A. Jeffrey.

Publication Year: 1999  View PDF »

Related Publications: view

Category: Journal Articles

Abstract: In this study, the microstructure of injection-molded polypropylene reinforced with cellulose fiber was investigated. Scanning electron microscopy of the fracture surfaces and X-ray diffraction were used to investigate fiber orientation. The polypropylene matrix was removed by solvent extraction, and the lengths of the residual fibers were optically determined. Fiber lengths were reduced by one-half when compounded in a high-intensity thermokinetic mixer and then injection molded. At low fiber contents, there is little fiber orientation; at high fiber contents, a layered structure arises. To better understand mechanisms of fracture under impact loading, dynamic fracture analysis was performed based on linear elastic fracture mechanics. Dynamic critical energy release rates and dynamic critical stress intensity factors were deduced from instrumented Charpy impact test measurements. Dynamic fracture toughness increased with cellulose content and with orientation of fibers perpendicular to the crack direction. A preliminary evaluation of a simple model relating the microstructure to the dynamic fracture toughness shows promise, but further work is needed to assess its validity.

Keywords: Polypropylenes, Cellulose, Fibers, Fracture, Toughness, Microstructure

File size: 221 kb(s)

This publication is also viewable on Treesearch:  view
RITS Product ID: 22006
Current FPL Scientist associated with this product
Clemons, Craig M.
Materials Research Engineer

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »

Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »

Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »

Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »