Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592


You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Effect of weathering cycle and manufacturing method on performance of wood flour and high-density polyethylene composites

Source: Journal of applied polymer science. Vol. 100 (2006): Pages 3131-3140

Author(s)Stark, Nicole M.

Publication Year: 2006  View PDF »

Category: Journal Articles

Abstract: Wood-plastic lumber is promoted as a low-maintenance high-durability product. When exposed to accelerated weathering, however, wood-plastic composites may experience a color change and loss in mechanical properties. Differences in weathering cycle and composite surface characteristics can affect the rate and amount of change caused by weathering. In this study, 50% wood flour filled high-density polyethylene composite samples were injection molded, extruded, or extruded and then planed to remove the manufacturing surface characteristics. Composites were exposed to two accelerated weathering cycles in a xenon arc weathering apparatus. This apparatus exposed the samples to xenon arc radiation, which is a combination of UV, visible, and IR radiation that is similar to solar radiation. Composites were exposed to radiation with or without water spray. After exposure to radiation and water spray, composites with more wood component at the surface (i.e., planed samples) experienced a larger percentage of total loss in flexural modulus of elasticity and strength after weathering compared with the other composites. Composites exposed to radiation only did not experience as much change in properties as those exposed to radiation with water spray. The results of this study demonstrate that exposing wood- plastic composites to water spray in combination with radiation is more severe than exposing wood-plastic composites to radiation only.

Keywords: Polyethylene, wood flour, extrusion, injection molding, weathering

File size: 268 kb(s)

This publication is also viewable on Treesearch:  view
RITS Product ID: 17300
Current FPL Scientist associated with this product
Stark, Nicole M.
Research Chemical Engineer

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »

Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »

Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »

Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »