Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592


You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Two-dimensional finite element heat transfer model of softwood. Part I, Effective thermal conductivity

Source: Wood and fiber science. Vol. 38, no. 4 (2006): pages 592-598.

Author(s)Hunt, John F.; Gu, Hongmei

Publication Year: 2006  View PDF »

Category: Journal Articles

Abstract: The anisotropy of wood complicates solution of heat and mass transfer problems that require analyses be based on fundamental material properties of the wood structure. Most heat transfer models use average thermal properties across either the radial or tangential direction and do not differentiate the effects of cellular alignment, earlywood/latewood differences, or ring orientation. A model that considers these basic structural characteristics would be more accurate than most models in the literature, which do not consider the anatomical structure of wood. The two-dimensional finite element model described here was developed to determine the effective thermal conductivity as a function of cell alignment and cell porosity by modeling the softwood cell structure in either a pure radial or pure tangential orientation. This paper presents the results predicted from the cellular model, from which a new nonlinear regression equation for radial or tangential effective thermal conductivities is determined as a function of density (porosity). The results will be applied to a two-dimensional softwood board model for transient thermal analysis (Part II). Subsequent papers in this series apply and adapt this model to various lumber orientation and sires and to wood at various moisture contents (Part III and IV).

Keywords: Finite element analysis, transient heat transfer, cellular characteristics, porosity, thermal conductivity, anisotropy, mass transfer, finite element method, heat conduction, softwood, heat flux, heat transmission, thermal properties, wood density, mathematical models

File size: 126 kb(s)

This publication is also viewable on Treesearch:  view
RITS Product ID: 24217
Current FPL Scientists associated with this product (listed alphabetically)
Gu, Hongmei
Forest Products Technologist
Hunt, John F.
Research General Engineer

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »

Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »

Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »

Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »