Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592


You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Nondestructive evaluation of incipient decay in hardwood logs

Source: Gen. Tech. Rep. FPL-GTR-162. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. 11 pages

Author(s)Wang, Xiping; Wiedenbeck, Jan; Ross, Robert J.; Forsman, John W.; Erickson, John R.; Pilon, Crystal; Brashaw, Brian K.

Publication Year: 2005  View PDF »

Category: General Technical Reports

Abstract: Decay can cause significant damage to high-value hardwood timber. New nondestructive evaluation (NDE) technologies are urgently needed to effectively detect incipient decay in hardwood timber at the earliest possible stage. Currently, the primary means of inspecting timber relies on visual assessment criteria. When visual inspections are used exclusively, they provide no indication of the extent of internal deterioration that may exist in timber. In this study, time-of-flight, stress-wave tomography, and micro-drilling resistance methods were investigated for locating incipient decay in sugar maple logs. We found that the capability of the single-path time-of-flight method for decay detection is very limited, and the method can be used only to identify logs and trees with moderate and severe decay. Resistance-based detection of decay (including early stages) is effective if the resistance drilling device is oriented so that its path goes through the decay zone; however, orienting the drill through the decay is difficult to guarantee. A multi- sensor stress-wave device can overcome the path-dependent detection issue. Results from laboratory testing indicate that the eight-sensor two dimensional stress-wave device has good potential for assisting in the detection of incipient decay in roundwood, such as logs and standing timber. However, to more effectively locate early-stage decay within a hardwood timber, more sensors should be added to the measurement system to obtain a higher resolution two-dimensional tomography image of a cross section. Field studies on standing hardwood timber should further investigate the effectiveness of these NDE methods with improved systems and procedures. This research could benefit field foresters and managers in using NDE technologies to assess the health condition of hardwood timber in the forest and could potentially lead to significant economic savings.

Keywords: hardwood log, incipient decay, micro-drilling resistance, resistograph, stress wave, tomograph

File size: 1 kb(s)

This publication is also viewable on Treesearch:  view
RITS Product ID: 22109
Current FPL Scientists associated with this product (listed alphabetically)
Ross, Robert J.
Supervisory Research Gen. Engineer
Wang, Xiping
Research Forest Products Technologist

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »

Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »

Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »

Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »