Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592


You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: A homokaryotic derivative of a Phanerochaete chrysosporium strain and its use in genomic analysis of repetitive elements

Source: Applied and environmental microbiology. Vol. 66, no. 4 (Apr. 2000).:p. 1629-1633 : ill.

Author(s)Stewart, Philip.; Gaskell, Jill.; Cullen, Daniel.

Publication Year: 2000  View PDF »

Category: Journal Articles

Abstract: Analysis of complex gene families in the lignin-degrading basidiomycete Phanerochaete chrysosporium has been hampered by the dikaryotic nuclear condition. To facilitate genetic investigations in P. chrysosporium strain BRM-F-1767, we isolated a homokaryon from regenerated protoplasts. The nuclear condition was established by PCR amplification of five unlinked genes followed by probing with allele-specific oligonucleotides. Under standard nitrogen-limited culture conditions, lignin peroxidase, manganese peroxidase, and glyoxal oxidase activities of the homokaryon were equivalent to those of the parental dikaryon. We used the homokaryon to determine the genomic organization and to assess transcriptional effects of a family of repetitive elements. Previous studies had identified an insertional mutation, Pce1, within lignin peroxidase allele lipI2. The element resembled nonautonomous class II transposons and was present in multiple copies in strain BKM-F-1767. In the present study, three additional copies of the Pce1 -like element were cloned and sequenced. The distribution of elements was nonrandom; all localized to the same 3.7-Mb chromosome, as assessed by segregation analysis and Southern blot analysis of the homokaryon. Reverse transcription-PCR (RT-PCR) showed that Pce1 was not spliced from the lipI2 transcript in either the homokaryon or the parental dikaryon. However, both strains had equivalent lignin peroxidase activity, suggesting that some lip genes may be redundant.

Keywords: Phanerochaete chyrsosporium; Basidiomycotina; Genome analysis; Lignin; Strains; Wood destroying fungi; Decay fungi; Homokaryon

File size: 227 kb(s)

This publication is also viewable on Treesearch:  view
RITS Product ID: 21860
Current FPL Scientist associated with this product
Cullen, Daniel
Research Microbiologist

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »

Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »

Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »

Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »