Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592
Email

 

You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Surface chemistry and mechanical property changes of wood-flour/high-density-polyethylene composites after accelerated weathering

Source: Journal of applied polymer science. Vol. 94 (2004): pages 2263-2273.

Author(s)Stark, Nicole M.; Matuana, Laurent M.

Publication Year: 2004  View PDF »

Category: Journal Articles

Abstract: Although wood-plastic composites have become more accepted and used in recent years and are promoted as low-maintenance, high-durability building products, they do experience a color change and a loss in mechanical properties with accelerated weathering. In this study, we attempted to characterize the modulus-of-elasticity (MOE) loss of photostabilized high- density polyethylene (HDPE) and composites of wood flour and high-density polyethylene (WF/HDPE) with accelerated weathering. We then examined how weathering changed the surface chemistry of the composites and looked at whether or not the surface changes were related to the MOE loss. By examining surface chemistry changes, we hoped to begin to understand what caused the weathering changes. The materials were left unstabilized or were stabilized with either an ultraviolet absorber or pigment. After 1000 and 2000 h of accelerated weathering, the samples were tested for MOE loss. Fourier transform infrared (FTIR) spectroscopy was employed to monitor carbonyl and vinyl group formation at the surface. Changes in the HDPE crystallinity were also determined with FTIR techniques. It was determined that structural changes in the samples (carbonyl group formation, terminal vinyl group formation, and crystallinity changes) could not be reliably used to predict changes in MOE with a simple linear relationship. This indicated that the effects of crosslinking, chain scission, and crystallinity changes due to ultraviolet exposure and interfacial degradation due to moisture exposure were interrelated factors for the weathering of HDPE and WF/HDPE composites.

Keywords: Composites, FT-IR, polyethylene

File size: 556 kb(s)

This publication is also viewable on Treesearch:  view
RITS Product ID: 21722
Current FPL Scientist associated with this product
Stark, Nicole M.
Research Chemical Engineer
  

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »


Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »


Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


Nanotechnology

A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »


Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »