Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592
Email

 

You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Durability of the adhesive bond in cross-laminated northern hardwoods and softwoods

Source: Construction and Building Materials

Author(s)Musah, Munkaila ; Wang, Xiping ; Dickinson, Yvette ; Ross, Robert J.; Rudnicki, Mark ; Xie, Xinfeng

Publication Year: 2021  View PDF »

Category: Journal Articles

Abstract: In this study, we investigated the durability of adhesive bonds in the cross-laminated lumber of seven hardwood and two softwood species from the Great Lakes region. The 2-layered cross-laminations were glued using phenol resorcinol- and melamine-based structural adhesives. A total of 720 cross-laminated wood blocks were tested for delamination by exposing the samples to cyclic (wet-dry) conditions. Distribution of the adhesive on the bondlines was also studied to understand the effect of adhesive penetration on bond durability. The results indicated that mixed hardwood cross-laminations generally produced better bonds than single hardwood species cross-laminations. Hardwood and softwood hybrid cross-laminations were found to have better bond durability in dry-wet cycles. A high failure rate (≥ 50%) was found in the following single species cross-laminations: aspen, white ash, white pine, and yellow birch. Similarly, several mixed species cross-laminations resulted in a delamination rate of 50% and higher, which raises caution in their use in CLT manufacturing. In addition, the viscosity of the adhesive influences the maximum depth of penetration, which tends to affect the durability of adhesive bonds.

Keywords: Cyclic delamination; anatomical structures of wood; specific gravity; adhesive penetration

Publication Review Process: Formally Refereed

File size: 3,072 kb(s)

Date posted: 11/02/2021

This publication is also viewable on Treesearch:  view
RITS Product ID: 10388
Current FPL Scientists associated with this product (listed alphabetically)
Ross, Robert J.
Supervisory Research Gen. Engineer
Wang, Xiping
Research Forest Products Technologist
 

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »


Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »


Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


Nanotechnology

A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »


Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »