Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592
Email

 

You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Tree crown injury from wildland fires: Causes, measurement and ecological and physiological consequences

Source: New Phytologist. 231: 1676-1685.

Author(s): Varner, J. Morgan; Hood, Sharon M.; Aubrey, Doug P.; Yedinak, Kara ; Hiers, J. Kevin; Jolly, W. Matthew; Shearman, Timothy M.; McDaniel, Jennifer K.; O'Brien, Joseph J.; Rowell, Eric M.

Publication Year: 2021  View PDF »

Category: Journal Articles
Associated Research Project(s):   FPL-4716-2A

Abstract: The dead foliage of scorched crowns is one of the most conspicuous signatures of wildland fires. Globally, crown scorch from fires in savannas, woodlands and forests causes tree stress and death across diverse taxa. The term crown scorch, however, is inconsistently and ambiguously defined in the literature, causing confusion and conflicting interpretation of results. Furthermore, the underlying mechanisms causing foliage death from fire are poorly understood. The consequences of crown scorch – alterations in physiological, biogeochemical and ecological processes and ecosystem recovery pathways – remain largely unexamined. Most research on the topic assumes the mechanism of leaf and bud death is exposure to lethal air temperatures, with few direct measurements of lethal heating thresholds. Notable information gaps include how energy transfer injures and kills leaves and buds, how nutrients, carbohydrates, and hormones respond, and what physiological consequences lead to mortality. We clarify definitions to encourage use of unified terminology for foliage and bud necrosis resulting from fire. We review the current understanding of the physical mechanisms driving foliar injury, discuss the physiological responses, and explore novel ecological consequences of crown injury from fire. From these elements, we propose research needs for the increasingly interdisciplinary study of fire effects.

Keywords: convection; crown scorch; energy dose; fire effects; leaves; plant hydraulics; post-fire tree mortality; tree stress

Publication Review Process: Formally Refereed

File size: 2,048 kb(s)

Date posted: 07/26/2021

This publication is also viewable on Treesearch:  view
RITS Product ID: 10192

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »


Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »


Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


Nanotechnology

A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »


Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »