Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592
Email

 

You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Dynamic life cycle carbon and energy analysis for cross-laminated timber in the Southeastern United States

Source: Environmental Research Letters

Author(s)Lan, Kai ; Kelley, Stephen ; Nepal, Prakash ; Yao, Yuan

Publication Year: 2020  View PDF »

Category: Journal Articles

Abstract: 

Life cycle assessment (LCA) has been used to understand the carbon and energy implications of manufacturing and using cross-laminated timber (CLT), an emerging and sustainable alternative to concrete and steel. However, previous LCAs of CLT are static analyses without considering the complex interactions between the CLT manufacturing and forest systems, which are dynamic and largely affected by the variations in forest management, CLT manufacturing, and end-of-life options. This study fills this gap by developing a dynamic life-cycle modeling framework for a cradle-to-grave CLT manufacturing system across 100 years in the Southeastern United States. The framework integrates process-based simulations of CLT manufacturing and forest growth as well as Monte Carlo simulation to address uncertainty. On a 1-ha forest land basis, the net greenhouse gas (GHG) emissions range from −954 to −1445 metric tonne CO2 eq. for a high forest productivity scenario compared to −609 to −919 metric tonne CO2 eq. for a low forest productivity scenario. All scenarios showed significant GHG emissions from forest residues decay, demonstrating the strong needs to consider forest management and their dynamic impacts in LCAs of CLT or other durable wood products (DWP). The results show that using mill residues for energy recovery has lower fossil-based GHG (59%–61% reduction) than selling residues for producing DWP, but increases the net GHG emissions due to the instantaneous release of biogenic carbon in residues. In addition, the results were converted to a 1 m3 basis with a cradle-to-gate system boundary to be compared with literature. The results, 113–375 kg CO2 eq. m3 across all scenarios for fossil-based GHG emissions, were consistent with previous studies. Those findings highlight the needs of system-level management to maximize the potential benefits of CLT. This work is an attributional LCA, but the presented results lay a foundation for future consequential LCAs for specific CLT buildings or commercial forest management systems.



Keywords: cross-laminated timber; life cycle assessment; dynamic; carbon analysis; greenhouse gas emissions; energy consumption

Publication Review Process: Formally Refereed

File size: 2,048 kb(s)

Date posted: 03/12/2021

This publication is also viewable on Treesearch:  view
RITS Product ID: 10124

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »


Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »


Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


Nanotechnology

A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »


Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »