Banner for LabNotes
From Lab Notes
Contact Information
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53726-2398
Phone: (608) 231-9200
Fax: (608) 231-9592
Email

 

You are here: FPL Home  / Information Products & Services  / Publications

Requested Product

Title: Seismic performance factors for cross-laminated timber shear wall systems in the United States

Source: Journal of Structural Engineering. 146(9): 04020172. 16 p.

Author(s)van de Lindt, John W.; Amini, M. Omar; Rammer, Douglas ; Line, Philip ; Pei, Shiling ; Popovski, Marjan

Publication Year: 2020  View PDF »

Category: Journal Articles

Abstract: Seismic force resisting systems based on cross-laminated timber (CLT) shear walls have garnered considerable attention for in mid-rise construction around the world. The purpose of this study was to determine seismic performance factors for CLT shear wall systems in platform type construction. These factors, namely, the response modification factors, R, overstrength factor, Ωo and deflection amplification factor, Cd, have been developed in this study for CLT walls and proposed for inclusion in ASCE 7. The study follows the FEMA P695 methodology that incorporates testing, evaluating a design methodology, defining the design space representative of typical construction, and comprehensive performance evaluation. The testing phase of the project consisted of connector testing and CLT shear wall testing, all with nonproprietary generic connectors to facilitate building code recognition. The design methodology and archetype development process are also discussed in this paper. A total of nine index buildings were developed from which 72 archetypes were extracted for this study. The archetypes were designed based on the design methodology and assessed with nonlinear pushover analysis and incremental dynamic analysis. Based on the required collapse margin, an R factor of 3 is proposed for CLT shear wall systems with 2 1 or mixed aspect ratio panels up to 4 1, and an R factor of 4 is proposed for CLT shear wall systems made up of only 4∶1 aspect ratio panels.

Keywords: Cross-laminated timber; design; seismic; FEMA P695

Publication Review Process: Formally Refereed

File size: 3,072 kb(s)

Date posted: 01/25/2021

This publication is also viewable on Treesearch:  view
RITS Product ID: 10097
Current FPL Scientist associated with this product
Rammer, Douglas R.
Research General Engineer
  

Additional items that might interest you
View the video celebrating FPL's 100 years of public service in 2010, from the producers of the Greatest Good....view

Research Highlights from FPL....view

Termite Eradication: A search for the Holy Grail.... view

Moisture Management in Residential Construction Series videos...view

Wood Floor Systems in Residential Construction Series videos....view
- FPL's Mission and Strategic Plan -

FPL's mission is to identify and conduct innovative wood and fiber utilization research that contributes to conservation and productivity of the forest resource, thereby sustaining forests, the economy, and quality of life. ... ..more »

- FPL Research Emphasis Areas -
Advanced Composites

As an integral part of the FPL mission, we improve the long-term sustainability of our Nation's forests by creating valuable composite products from biobased materials ... ..more »


Advanced Structures

The FPL has been in the forefront of wood-frame housing research since 1910 and has long been recognized as a world leader in such housing-related areas as engineered wood ... ..more »


Forest Biorefinery

We all know the compelling reasons that the United States needs to reduce its dependence on fossil fuels. Historically, the greatest increases in energy demand have been for transportation fuels ... ..more »


Nanotechnology

A leader in wood products research for over a century, the FPL is positioning itself to become the lead Federal research facility for the application of nanotechnology in forest products ... more »


Woody Biomass Utilization

Forests in the United States contain a substantial amount of small-diameter, overstocked, and underutilized material.FPL research projects are exploring the potential of the small-diameter ... ..more »