New Technology, Old Problems: Heat Release Research an FPL Mainstay

The following post is adapted from the book Forest Products Laboratory 1910-2010, Celebrating A Century of Accomplishments.

As an early promoter of the use of heat release rate as a measure of relative flammability, John Brenden developed the original Forest Products Laboratory (FPL) apparatus to measure the heat released by a burning material in the 1960s. Heat release research was reliable and effective, and FPL continued to obtain new equipment as better technologies were developed to measure heat release rates.

The cone calorimeter replaced the apparatus from Ohio State University that was employed by FPL researchers in the 1980s.

In the 1980s, the original apparatus was replaced by one from Ohio State University, and 10 years later, was replaced by a cone calorimeter developed by the National Bureau of Standards. Today this organization is known as the National Institute for Standards and Technology. The cone calorimeter is used in investigations into fire-retardant treatments (FRT) for composite materials and fundamental research on the fire behavior of wood.

A cone calorimeter is a laboratory instrument that gathers data ranging from ignition time, to combustion products and, of course, heat release rate. It is used with small samples of flammable material. Its name reflects the conical shape of the radiant heater used in the device.

In addition to their use in evaluating the effectiveness of fire-retardant treatments, test methods for the rate of heat release were critical in the development of models to predict flame spread behavior of wood and times for flashover in the standard room-corner test.

Heat release graphs are still used by FPL researchers to determine the effectiveness of flame-retardant wood treatments.

Today, FPL researchers still use heat release rates to determine a material’s flammability. FPL Research General Engineer Mark Dietenberger, and Laura Hasburgh, a Fire Protection Engineer at FPL, feature an FRT heat release rate graph in their recently published document, Wood Products Thermal Degradation and Fire in the Materials Science and Materials Engineering Reference Module for Elsevier. More information can be viewed here.