$10 Million Grant Awarded for Biomass Consortium

The National Institute for Food and Agriculture recently announced the recipients of $90 million in funding through the agency’s Agriculture and Food Research Initiative’s Sustainable Agriculture Systems program.

The Forest Products Laboratory (FPL) is a main collaborator in a project lead by West Virginia University’s Jingxin Wang. The project, “Mid-Atlantic Sustainable Biomass for Value-added Products Consortium (MASBio)” was awarded $10 million over five years to deliver a sustainable and economically feasible biomass for value-added products system in the Mid-Atlantic region of the United States.

Continue reading

A Salty Tale of Wood Damage Research and Discovery

A tenacious fungus, a conspiracy theory, a historic ship, a unique gift from Princeton University, and two Forest Products Laboratory (FPL) researchers, Grant Kirker and Samuel Zelinka, collaborating with researchers from Germany and Canada all converged in the right order of events to produce some of the most significant advances in wood salt damage understanding in over twenty years.

Samuel Zelinka – Supervisory Materials Research Engineer
Grant Kirker – Research Forest Products Technologist

A recent publication, “Salt Damage in Wood: Controlled Laboratory Exposures and Mechanical Property Measurements,” is the result of all of these circumstances and characters clashing and aligning.

Continue reading

Research on Electronic Components Made from Wood Continues to Advance

The Forest Products Laboratory and the University of Wisconsin-Madison (UW) have a history of collaboration aimed at making electronic components from wood. From flexible electronic screens to computer chips, this partnership has produced fascinating results. Learn more about the latest development in the following article from the UW.

Critical communications component made on a flexible wooden film

By Jason Daley

In the not-too-distant future, flexible electronics will open the door to new products like foldable phones, tablets that can be rolled, paper-thin displays and wearable sensors that monitor health data. Developing these new bendy products, however, means using materials like new plastics and thin films to replace the rigid circuit boards and bulky electronic components that currently occupy the interiors of cell phones and other gadgets.

Continue reading

FPL’s XyloTron Helps Timber Industry in Ghana

The XyloTron, a Forest Products Laboratory (FPL)-developed, field-deployable digital imaging device for wood, is having a positive impact on timber industries worldwide.

In 2018, a Ghanaian wood identification expert and three inspectors from the country’s Timber Industry Development Division, spent time at FPL learning how to use the Xylotron so they could train others to use the equipment when they returned home.

This recently released video tells the story of how the device is now being used in Ghana, where more than two million people earn their living in the wood and timber industry.

110 Years of FPL: Strength Testing

In celebration of 110 years of research at the Forest Products Laboratory (FPL), we are revisiting blog posts that detail some of our most interesting historic people, places, and projects. Enjoy!

A 1950’s test of a large wood cylindrical structure in the 1,000,000-pound capacity testing machine. This machine was also used to evaluate poles, piles and large wood beams.

Forest Product Laboratory (FPL) researchers established selection and testing procedures for determining strength properties of wood, which were adopted as standards by ASTM International (formerly the American Society for Testing and Materials, ASTM). These standards have, in recent years, had an important bearing on the development of comprehensive international standards sponsored by the Committee on Mechanical Wood Technology of the Food and Agricultural Organization of the United Nations.

Strength testing research conducted by FPL employees included the following categories:

Toughness Testing
FPL developed a machine to test the ability of wood to absorb shock or impact loads. The toughness test procedure and machine have become standard both nationally and internationally.

Strength Factors
The staff determined the effect that knots, preservative treatment, decay, moisture content, and other factors have on wood strength. This work has resulted in increased safety, marked improvement in efficiency, and increased satisfaction in wood use.

Low Temperatures
FPL carried out research at temperatures as low as -300°F, which showed that—far from becoming weak and brittle at low temperatures—wood actually gets stronger. This data established wood’s advantages for construction in frigid areas and have helped established new uses for wood, such as structural insulation in commercial barges that provide low-cost, world-wide transportation for liquid methane.

Decayed Wood
FPL evaluated the properties of Douglas-fir lumber cut from timber infected with a fungus called white pocket, to show how it could be used effectively. As a result, Douglas-fir sheathing and dimension grades are permitted to contain certain amounts of white pocket. Over-mature timber previously left in the woods can now be harvested and used more effectively.

Long-Term Loading Effects
Most strength testing of wood reveals the reaction of wood to the application of loads over a very short time. Most wood used in structures however is expected to carry load for long periods of times. The FPL has therefore carried out long-term loading experiments to develop data to support engineers and design professionals.