FPL Partner Procures Patent: Better Building With BioSIPS

Whether serving as a bookshelf, tabletop, or wall panel, the composite board is a ubiquitous construction material found in furniture and homes alike. Traditional composite boards use mankind’s most trusted building resource, wood, as a base — but a new patented process using waste products stands to revolutionize the familiar building material, making it even more sustainable and environmentally friendly.

FPL-2011-24

BioSIPS use low-value recycled material to make high-value structural materials.

Julee Herdt, a professor at the University of Colorado – Denver, and Kellen Schauermann, a former graduate student, were recently awarded a patent for their Bio-Structural Insulated Panels (BioSIPS) system. BioSIPS are structural boards comprised of waste material such as recycled paper, noxious weeds, industrial hemp, and forest debris.

Herdt, the CEO and president of BioSIPS Inc., hopes that her product will help ease the environmental and energy concerns of tomorrow.

Although wood-based Structural Insulated Panels (SIPS) have been around for some time, Herdt’s BioSIPS, made from 100% recycled material, could replace their conventional wood counterparts. BioSIPS wall, floor, and roof panels even surpass conventional SIPS in some strength-testing areas (especially compressive and transverse loading) as well as exhibit superior thermal characteristics — which is important, as thermally-efficient structures go hand-in-hand with decreased energy usage.

Herdt’s accomplishment comes on the heels of a long legacy of research and collaboration with the Forest Products Laboratory (FPL). In 1995, she was part of a project that researched and tested GRIDCORE (FPL’s Spaceboard) panels — three-dimensional, molded structural panels comprised of recycled corrugated containers, old newsprint, and kenaf, a plant native to southern Asia. The name “spaceboard” referred to the spaces afforded by the waffle-like design of the GRIDCORE panels, which allowed for increased strength and decreased weight and material usage.

Nearly 20 years later, BioSIPS, like GRIDCORE panels before them, carry on the tradition of turning society’s low-grade waste into high-value products that have proven utility in real-world construction projects. Along with her personal office, Herdt and her team built entire houses with BioSIPS, winning first prize at the U.S. Department of Energy’s Solar Decathlon in 2002 and 2005.

biosips

Herdt, Schauermann and Hunt await another patent for new methods of creating complex three-dimensional shapes with fiber boards.

Herdt and Schauermann, along with FPL Research General Engineer John Hunt, are awaiting the award of a second patent, Cut-Fold Shape Technology for Engineered Molded Fiber Boards, which relates to a new process of folding fiber boards into three-dimensional shapes to maximize their utility and strength.

In a world of increased environmental awareness, BioSIPS promise to offer designers, engineers, and industry professionals new ways to build strong, energy-efficient structures and provide another avenue for society to make better use of its waste products. Through technologies like these, we will better be able to tackle the construction challenges of tomorrow in an environmentally responsible way.