Performance of Mass Timber Construction in Fire

Christian Dagenais, Eng., M.Sc. – FPInnovations

Mass Timber (CLT) Research Workshop
November 3rd, 2015 – Madison (WI), USA
Outline

- Fire-Resistance
- Surface Flammability
- Fire Stops and Service Penetrations
- Compartment Fires
- Conclusion
Fire-Resistance of CLT

- Full-scale testing in accordance with ULC S101 / ASTM E119 (joint FPI/NRC Test Program)
 - Charring rate
 - Fire performance of adhesive (PUR)
 - Calculation procedure for US and Canadian standards
- Additional full-scale tests were also conducted with wood industry partners and CLT manufacturers
Fire-Resistance of CLT

Table 1 – Fire resistance test results (Dagenais 2014)

<table>
<thead>
<tr>
<th># Plies</th>
<th>ANSI/APA PRG 320 Stress Grade</th>
<th>Thickness (in)</th>
<th>Gypsum Board Protection</th>
<th>Superimposed Load</th>
<th>Failure Time</th>
<th>Type of Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>WALL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>E2</td>
<td>4 1/2</td>
<td>2 x 1/2” Type X</td>
<td>22,818 lb/ft</td>
<td>1 h 46 min</td>
<td>R</td>
</tr>
<tr>
<td>5</td>
<td>E1</td>
<td>6 7/8</td>
<td>Unprotected</td>
<td>22,818 lb/ft</td>
<td>1 h 53 min</td>
<td>E</td>
</tr>
<tr>
<td>5</td>
<td>V2</td>
<td>4 1/8</td>
<td>Unprotected</td>
<td>4,934 lb/ft</td>
<td>57 min</td>
<td>R</td>
</tr>
<tr>
<td>3 [1]</td>
<td>E1</td>
<td>4 1/8</td>
<td>Unprotected</td>
<td>20,214 lb/ft</td>
<td>32 min</td>
<td>R</td>
</tr>
<tr>
<td>5 [2]</td>
<td>E1</td>
<td>6 7/8</td>
<td>1x 5/8” Type X (both sides)</td>
<td>8,702 lb/ft</td>
<td>3 h 06 min</td>
<td>R</td>
</tr>
<tr>
<td>5 [3]</td>
<td>E1</td>
<td>6 7/8</td>
<td>2 x 5/8”</td>
<td>30,767 lb/ft</td>
<td>3 hr 39 min</td>
<td>R</td>
</tr>
<tr>
<td>FLOOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>E2</td>
<td>4 1/2</td>
<td>2 x 1/2” Type X</td>
<td>56 psf</td>
<td>1 h 17 min</td>
<td>[4]</td>
</tr>
<tr>
<td>5</td>
<td>E1</td>
<td>6 7/8</td>
<td>Unprotected</td>
<td>246 psf</td>
<td>1 h 36 min</td>
<td>E</td>
</tr>
<tr>
<td>3</td>
<td>V2</td>
<td>4 1/8</td>
<td>1 x 5/8” Type X</td>
<td>50 psf</td>
<td>1 h 26 min</td>
<td>R</td>
</tr>
<tr>
<td>5</td>
<td>V2</td>
<td>6 7/8</td>
<td>1 x 5/8” Type X</td>
<td>169 psf</td>
<td>2 h 04 min</td>
<td>E</td>
</tr>
<tr>
<td>7</td>
<td>V2</td>
<td>9 3/8</td>
<td>Unprotected</td>
<td>305 psf</td>
<td>2 h 58 min</td>
<td>R</td>
</tr>
<tr>
<td>5 [3]</td>
<td>E1</td>
<td>6 7/8</td>
<td>3 1/2” Glass Fiber Insulation 5/8” Resilient Channels 1 x 5/8” Type X</td>
<td>196 psf</td>
<td>2 h 08 min</td>
<td>R</td>
</tr>
</tbody>
</table>

*R—Structural Failure, E—Integrity Failure

Fire-Resistance of CLT

- Timber-Concrete Composite Floors

 FRR > 3½ hrs

NLT

CLT
Fire-Resistance of CLT

- CLT can exhibit significant fire-resistance
- Charring rate similar to mass timber, but...
 - 0.65 mm/min (one-dimensional)
 - Stepped charring model (i.e. not constant throughout)
 - Influenced by the adhesive and thickness of laminates
 - More studies are required on adhesives exposed to fire
- Failure modes are different from walls to floors
 - Buckling (P-Δ effects) vs. Integrity between panels
 - Fire integrity can easily be resolved using flooring/topping
Surface Flammability

- Full-scale testing in accordance with ULC S102 and ASTM E84
 - Tests conducted with AWC and CLT/SCL manufacturers
- Mass timber behaves as thermally-thick solids (vs. thermally-thin)
- Exhibit lower FSI when compared to traditional interior wood finish materials
Surface Flammability
Surface Flammability

<table>
<thead>
<tr>
<th>Wood and Wood-Based Products</th>
<th>Flame Spread Rating</th>
<th>Smoke Developed Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lumber, not less than 19 mm (3/4”) in thickness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Red</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>65</td>
<td>n.d.</td>
</tr>
<tr>
<td>Sitka</td>
<td>74</td>
<td>74</td>
</tr>
<tr>
<td>Western</td>
<td>100</td>
<td>n.d.</td>
</tr>
<tr>
<td>Spruce</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structural Composite Lumber (SCL)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSL</td>
<td>Min. 89 mm (3½”) on flat</td>
<td>35</td>
</tr>
<tr>
<td>LVL</td>
<td>Min. 140 mm (5½”) on edge</td>
<td>35</td>
</tr>
<tr>
<td>LSL</td>
<td>Min. 89 mm (3½”) on flat</td>
<td>70</td>
</tr>
<tr>
<td>Cross-Laminated Timber (CLT)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLT</td>
<td>E1 Stress Grade (min. 105 mm)</td>
<td>35</td>
</tr>
<tr>
<td>V2 Stress Grade (min. 99 mm)</td>
<td>40</td>
<td>30</td>
</tr>
</tbody>
</table>
Fire Stops and Service Penetrations

- **INTEGRITY** and **CONTINUITY** of fire separations are fundamental for achieving/providing the expected level of compartmentation
 - Penetrations and junctions are to be firestopped (tested per CAN/ULC S115 / ASTM E814)
Fire Stops and Service Penetrations

- Junctions evaluated per CAN/ULC S115
 - Floor-to-wall (sealant on unexposed side)
 - Floor-to-wall (sealant on exposed side)
 - Wall-to-Floor (sealant on both sides)
 - Floor-to-Floor
 - Stair landings

→ FT-rating of 1 to 2 hours
Fire Stops and Service Penetrations

- 6 penetrations tested per CAN/ULC S115 → F-rating of 1½ hrs.
Fire Stops and Service Penetrations

- Fire stopping provided at unexposed surface (fire stopping at exposed surface may also be required)
- Thermal insulation
- Through-penetrating item with enough clearance as to not touch the mass timber
- Fire stopping provided around through-penetrating item, up to an appropriate depth/thickness to account for anticipated/calculated charring of mass timber
Compartment Fires

- Compartment fire tests from 2011-2014
Compartment Fires

- Compartment fire tests from 2011-2014
 - Scenarios where CLT is 100% exposed
 - Contribution to fire growth
 - Scenarios where CLT is partially-exposed
 - Burnout of fuel content, depending on exposed face configurations
 - Scenarios where CLT is fully protected
 - Burnout of fuel content

Compartment Fires

- Compartment fire tests from 2011-2014
 - Evaluation of combustible and noncombustible construction subjected to natural fires
 1. CLT: 2 x Type C (½ in.)
 2. CLT: 2 x Type C (½ in.)
 3. CLT: fully exposed
 4. Wood-Frame: 1 x Type C (½ in.)
 5. Wood-Frame: 2 x Type C (½ in.)
 6. Cold-Formed Steel Frame: 1 x Type C (½ in.)

Compartments Fires

- Compartments fire tests from 2011-2014
Compartment Fires

- Mid-Rise Research Consortium (NRCC/CWC/FPI)
 - 3-Storey Apartment Unit, no sprinklers
Compartment Fires

- Mid-Rise Research Consortium (NRCC/CWC/FPI)
 - Duration: 185 min.
 - No structural failure
 - No fire spread beyond compartment boundaries
 - Fire dynamics similar to that of a compartment of noncombustible construction
 - CLT performed better than CFS apartment test
Compartment Fires

- Fire tests in support of a TWB in Quebec City
 - Exposed CLT in vertical shaft
 - Encapsulated CLT in room of fire origin
 - Gypsum board around fire-rated door
 - 45-min fire-rated door (vs. 20 min.)
 - Tested at NRCC laboratory
 - Funded by Quebec Government (MFFP)
Compartment Fires

- Fire tests in support of a TWB in Quebec City
Compartment Fires

- Fire tests in support of a TWB in Quebec City
 - Test conducted for 2 hours
 - Per NBCC for noncombustible construction
 - No fire penetration through walls/floor/ceiling
 - Very little charring on exposed CLT shaft wall
 - No charring/smoke inside CLT shaft
 - Reports (French/English) and video (French) available at:
Conclusion

- CLT detailing can provide for highly fire-resistance rated compartmentation in buildings
- Test results showed the effectiveness of the encapsulation approach in delaying contribution of wood structural members to fires
- Inherent fire performance of CLT makes it suitable for sound alternative solutions
- Design methods and guides are readily available
Acknowledgements

- Natural Resources Canada (NRCan)
- Provincial governments, namely RBQ, MFFP, OMMAH and BC FII
- Softwood Lumber Board
- FPInnovations’ industry members
- FPInnovations, NRC and USDA FPL staff
Thank you!
Christian Dagenais, Eng., M.Sc.
Scientist – Serviceability & Fire Performance
Advanced Building Systems
christian.dagenais@fpinnovations.ca

Follow us on
www.fpinnovations.ca