Crystal misorientation correlates with hardness in tooth enamels*

Cayla A. Stifler, Joseph E. Jakes, Jamie D. North, Daniel R. Green, James C. Weaver, Pupa U.P.A. Gilbert

*Part of the Special Issue on Biomineralization: From Cells to Biomatierals, associated with the BIONIN XV: 15th International Symposium on Biomineralization, held at the Ludwig Maximilian University, Sept 9–13, 2019, organized by Wolfgang Schmahl and Erika Griesshaber.

1 Corresponding author:
E-mail address: pupa@physics.wisc.edu (Pupa U.P.A. Gilbert).
1 Previously publishing as Gelsomina De Stasio.

1 Department of Physics, University of Wisconsin, Madison, WI 53706, United States
2 Forest Biopolymers Science and Engineering, USDA Forest Service, Forest Products Laboratory, Madison, WI 53726, United States
3 Department of Chemistry, Carlton College, Northfield, MN 55057, United States
4 Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, United States
5 Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, United States
6 Departments of Chemistry, Geoscience, Materials Science, University of Wisconsin, Madison, WI 53706, United States

ARTICLE INFO

Article history:
Received 11 April 2020
Revised 14 July 2020
Accepted 17 July 2020
Available online 22 July 2020

Keywords:
Enamel
Misorientation
PIC maps
Hardness

ABSTRACT

The multi-scale hierarchical structure of tooth enamel enables it to withstand a lifetime of damage without catastrophic failure. While many previous studies have investigated structure-function relationships in enamel, the effects of crystal misorientation on mechanical performance have not been assessed. To address this issue, in the present study, we review previously published polarization-dependent imaging contrast (PIC) maps of mouse and human enamel, and parrotfish enameloid, in which crystal orientations were measured and displayed in every 60-nm-pixel. By combining those previous results with the PIC maps of sheep enamel presented here we discovered that, in all enameloids, adjacent crystals are slightly misoriented, with misorientation angles in the 0°–30° range, and mean 2°–8°. Within this limited range, misorientation is positively correlated with literature hardness values, demonstrating an important structure-property relation, not previously identified. At greater misorientation angles 8°–30°, this correlation is expected to reverse direction, but data from different non-enamel systems, with more diverse crystal misorientations, are required to determine if and where this occurs.

Statement of Significance

We identify a structure-function relationship in tooth enamels from different species: crystal misorientation correlates with hardness, contributing to the remarkable mechanical properties of enamel in diverse animals.

© 2020 Acta Materialia Inc. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license.
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

1.1. Structure-function relationships

Since its infancy, the field of paleontology has sought to understand the function of fossilized bones and teeth based on their structure. Indeed, Georges Cuvier, the father of paleontology, believed that the structure of each component of any animal was intriniscally linked to its function, and wrote in 1840 that these links show “general laws, as demonstrable as those which are derived from calculation or experiment” [1]. Thus, nearly 200 years ago, scientists understood the importance of investigating structure-function relationships in biological materials. Tooth enamel, for example, has evolved structures at every length scale to meet the specific needs and functions of the animal, whether those are chewing tough plants, piercing and tearing off flesh, or crushing hard skeletal parts. In a representative 1974 study, Wolf-Ernst Reif classified shark tooth morphologies based on their function, and described how their microstructural designs supported each function [2]. Exploring these detailed multi-scale structure-function relationships in enamel enriches our understanding of what makes this biological material among the hardest and most durable

https://doi.org/10.1016/j.actbio.2020.07.037
1742-7061/© 2020 Acta Materialia Inc. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license.
(http://creativecommons.org/licenses/by-nc-nd/4.0/)
tissues in extant species during life, and in extinct species long after death.

1.2. Hierarchical structure of enamel

As with many other biominerals, the hierarchical organization of enamel, which combines hard, brittle hydroxyapatite \(\text{(Ca}_{10}\text{(PO}_4\text{)}_6\text{(OH)}_2) \) (HAP) with strategically placed soft, flexible organics in a highly organized structure spanning multiple length scales, is responsible for enamel’s remarkable mechanical properties [3]. In the present study, it should be noted that the abbreviation HAP does not simply refer to pure HAP, but also includes and encompasses all the frequent atomic substitutions in hydroxyapatite that are encountered in the teeth of diverse animal species [4-13]. Each hierarchical level of enamel’s structure has distinct functional purposes [14], and these levels, from the macro-scale to the nano-scale, are described in more detail in the following subsections and are demonstrated in Fig. 1.

1.2.1. Dentition

At the largest structural length scale, dentition refers to the arrangement of teeth in the mouth in a particular species [15]. While this level of structure has been studied for centuries, it is observable with the naked eye (see Fig. 1A), recent studies still offer new insights. For example, observations of modern and prehistoric human dentition show differences in wear attributable to changes in how the teeth occlude, during the transition from a hunter gatherer to an agricultural society [16]. The examination of dentition is also important in determining how animals process food. Modeling and experimental work, for example, have shown that an elongated tooth shape in sheep molars helps them resist fracture [17], and their characteristically continuously erupting growth mode is highly correlated with grazing behavior, counteracting the destructive effects of abrasive plant materials and soil particles ingested during feeding [18]. In a non-mammalian example, through the analysis of parrotfish pharyngeal tooth shape and wear patterns, Carr et al. were able to deduce how the pharynx moves to mill coral skeletons [19].

1.2.2. Dental tissue

Vertebrate teeth contain four different kinds of dental tissues: enamel, dentin, cementum, and pulp (see Fig. 1B). Enamel is the outermost, last-formed layer, and is 97% mineral by weight, mainly HAP [20, with enamel proteins playing an important role in enamel formation and patterning [21-24]. Dentin is less mineralized than enamel, at 70 w%, and characterized by the presence of tubules [25,26]. Each tubule is surrounded by a layer of mineralized, but non-collagen-containing peritubular dentin [25,26], which is in turn, surrounded by intertubular dentin consisting of mineralized collagen fibrils. Near the boundary between dentin and enamel, the tubules contain no peritubular dentin and are thought to cushion enamel during mechanical loading [27]. Cementum is slightly less mineralized than dentin, at 65 w% mineral, and it connects the root of the tooth to the jawbone and ligaments [20,26]. Cementum contains mineralized collagen and other proteins, and, in human teeth, grows in thickness over a lifetime [28]. The pulp is a completely soft tissue at the center of the tooth, and contains blood vessels and nerves [20]. In some fish, such as sharks and parrotfish, the outer tooth layer is made of fluorapatite (FAP, \(\text{Ca}_{10}\text{(PO}_4\text{)}_6\text{F}_2 \)) crystals, and is termed enamelon [29]. Notable exceptions are seen in the living lobed fin fish, (Latimeria spp.), which have true enamel, and in some genera of ray-finned fish (Polypterus and Lepisosteus), in which enamel covers the tooth shaft and is called collar enamel [30].

1.2.3. Rods and the higher-order patterns they create

Rods, previously called prisms, are cylindrical bundles of nearly aligned HAP nanocrystals (described in more detail in Section 1.2.4) with discontinuous organics on one side, and contain trace amounts of water [20,23,31]. The crystals surrounding the rods are called interrod or interprismatic enamel [32]. Generally, the rods are 2–10 μm in diameter and hundreds of microns long [32,33], and their shape and arrangement are species-specific. Some primate’s, such as lemuран, for example, have rods with perfectly circular cross-sections with fully encapsulated by interrod enamel that completely separate each rod from its neighbors (sometimes called pattern 1) [34-37]. In contrast, human enamel rod cross-sections are keyhole-shaped, with a round head portion and an elongated tail portion that makes up the interrod as shown in Fig. 2A (pattern 3) [35-40]. In sheep and other species, the enamel rods, by contrast, are not as well defined and resemble partially overlapping circles when viewed in section (pattern 2) [34]. The enamel from crocodiles has no rods whatsoever, and as such, is described as apismatic enamel [34]. Instead of rods, fish enamelon has bundles, groups of elongated FAP crystals with their elongation directions roughly aligned [2,29].
three-dimensional geometry of its decussation is not yet fully understood.

1.2.4. Nanocrystals or crystallites

At the nanoscale, enamel is composed of acicular HAP crystals that are approximately 25 nm by 60 nm in cross-section and hundreds of microns long [33,45,55–58,132]. Such nanocrystals form the micro-scale structure of enamel, including rod, interrod, and prismatic enamel, as well as fish enameloid bundles. Fish enameloid nanocrystals generally exhibit this same acicular geometry, but are instead composed of FAP [29,52]. These nanocrystals tend to have a preferred crystallographic orientation as observed by numerous x-ray diffraction studies [59–64], one that can even be partially recovered during remineralization studies in the presence of fluorine and amelogenin [64,65]. Transmission electron backscattered diffraction (tEBS) [66] and Polarization-dependent Imaging Contrast (PIC) mapping techniques, previously developed for carbonates [67–69], have also been employed to determine how enamel crystals are oriented with respect to their elongation direction and rod structures [53,70,71]. Surprisingly, Beniash et al. showed that the elongation direction of the nanocrystals and their crystallographic c-axis orientation are not parallel to one another [71]. This observation was surprising because synthetic FAP crystals grown in vitro invariably show that the crystals elongate along their c-axes [72]. Fig. 5 shows synthetic and biogenic single crystals, demonstrating this unexpected difference.

1.3. Measurable mechanical properties are tied to structure

In an attempt to understand the functional significance of its hierarchical structure, several previous studies have investigated the roles of specific enamel features on its bulk mechanical properties [73–76]. As the outermost layer of teeth, enamel must withstand hundreds of Newtons of force many times a day, and last a lifetime [77]. Even though it is primarily composed of a calcium-based mineral, the stress-strain behavior, creep response, and fracture behavior of enamel are more akin to metals like gold than to geologic apatite [78]. The specific elongation direction of rods, and its impact on mechanical properties [79–81] and wear [82], has also been investigated, revealing that the interrod inelastic energy dissipation is higher than in rod enamel [83]. Enamel hardness and elastic modulus also decrease from the surface of the tooth to the DEJ [84,85], and older enamel at the tooth surface is harder and stiffer than younger enamel [86]. Lastly, hardness and elastic modulus are both higher when the loading direction is parallel to the rod’s elongation direction than perpendicular to it [44]. Multiple studies on human enamel have examined how the hierarchical structure contributes to enamel’s remarkable fracture toughness, stress-strain behavior, and resistance to crack
Fig. 4. Polarization-dependent imaging contrast (PIC) maps of enamel from mouse (A), human (B), sheep (C), and enameloid from parrotfish (D-G). In all four species, the c-axis orientation of the HAP or FAP crystals is not always aligned with the elongation direction of crystals in the enamel rods or bundles. Across a single rod or bundle, HAP or FAP crystals are slightly misoriented to different extents in different species: mouse is the most cooriented, while parrotfish the most misoriented. All data except for C were previously published. Mouse, A, from [70], human, B, from [71], and parrotfish, D-G, from [53]. The 20-μm scalebar applies to all PIC maps.

Fig. 5. PIC maps of (A and B) selected human enamel rods from the PIC map in Fig. 4B [71], and (C) synthetic fluorapatite dumbbells. (A) A rod with its long axis perpendicular to the image plane contains nanocrystals with c-axis orientations gradually changing from 90° out of the polarization plane (black pixels in PIC maps) to in-plane (red), as indicated by an out-of-plane arrow (concentric circles) and the horizontal white arrow. This is a ~90° out-of-plane rotation. The interrod c-axis orientation is indicated with a black arrow. (B) Another rod with its long axis parallel to the image plane containing nanocrystals with c-axes indicated by white arrows. (C) The c-axes of the nanocrystals in fluorapatite dumbbells correspond to their radial orientation, in contrast to enamel.

propagation [75,76,87]. For example, a study investigating enamel cracks originating at the DEJ found that they rarely result in large-scale tooth failure [88]. Furthermore, the mechanical properties of enamel have been found to be anisotropic. At the whole-tooth scale, wear testing of successive layers of enamel were found to have different shear velocity components during grinding, demonstrating different resistance to wear for the different layers [89], and tooth numerical modeling reveals how variations in properties like the elastic modulus can help dissipate applied stresses [90]. At the rod scale, several studies have found hardness, elastic modulus, fracture toughness, crack propagation, and shear behavior to vary for tests carried out in different loading directions relative
to the rod elongation direction [44,74,91–94]. Although FAP and HAP pure minerals have different physical properties [95,96], many shark species like bonnethead sharks, sand tiger sharks [97], and great white sharks [98] have fluorapatite enameloid with hardness in the 3–5 GPa range in most tooth locations, which have hardness values similar to human and sheep enamel. Since the mechanical properties are similar, including both enamel and enameloid teeth in the same comparative plots, as in the present study, is justified.

1.4. Motivation for this analysis

While many previous studies have investigated the relationship between rod elongation direction in decussation patterns and crack propagation, there is no direct experimental evidence available on how intra-rod crystal coorientation or misorientation correlates with any mechanical properties. Despite this lack of direct experimental evidence, molecular dynamics simulations from Beniash et al. 2019 demonstrate that small misorientations deflect cracks better than larger or no misorientations [71].

Here, we hypothesize that enamel hardness correlates with the extent of crystal misorientation, which motivated the analysis of previously published PIC maps from mouse, human, and parrotfish enamel(oid) and previously published nano-hardness values. The results from these studies are organized into the plots reported here, to explore the correlation of the two parameters: one structural, crystal misorientation, and one functional, the hardness.

We also include here mechanical testing data from sheep teeth, which, although not previously published, exhibit the same trends, and thus strengthen the validation of the hardness-misorientation relationship hypothesized and tested here. While the hardness and elastic modulus of sheep enamel has been reported previously [99], those studies were performed on old and worn teeth. To eliminate the complications associated with the investigation of old and worn teeth, we instead conducted our own nanoindentation measurements on young and pristine teeth sheep teeth (see Section 4.4 for details).

2. Results

Surprisingly, the c-axis orientations of the nanocrystals do not always correspond with the elongation direction of the rod in all enamels presented here. Indeed, the difference between the long axis of the rod and the crystal orientation can be quite dramatic. Since mouse rods are circular in cross-section, once embedded and polished, their ellipticity can be used to infer their tilt angle relative to the polished surface. In the sample shown in Fig. 4A, for example, the sectioned green rods at the bottom of the image have their long axes at −30° from vertical but the PIC map indicates that the c-axis orientation is at +30° from vertical (green). In human enamel (Fig. 4B), the predominantly cyan rods are not vertical as expected, but closer to −30° from vertical. The green rods in sheep enamel (Fig. 4C) range from −30° to −15° from vertical in elongation direction, even though the c-axes are all aligned at +30°. Similarly, the dark blue bundles in parrotfish enameloid (Fig. 4F-G) have their c-axes oriented at −30° from vertical but are elongated −60°–0° from vertical. Fig. 5 shows two individual rods from Fig. 4B at a higher magnification along with synthetic fluorapatite dumbbells and the contrast is striking. The c-axes orientations of the nanocrystals in the human rods gradually shift from being aligned with the rod direction to 90° from it (Fig. 5A), while in the dumbbell nanocrystals the c-axes orientation exactly matches their elongation direction. A detailed description on the interpretation of PIC maps is included in Section 4.2. To minimize confusion, we clarify that all angles described in the text are with respect to the polarization plane, not the image plane.

The local misorientation in a PIC map can be described by a parameter called misorientation Δc, which is the angular distance in three dimensions between the crystalline c-axes in two adjacent 60 nm-pixels [71,100,101]. For example, if the c-axis of the crystal in one pixel is oriented at 30° and the one in the adjacent pixel at 40°, the misorientation Δc is 10°. Because the nanocrystals are ∼60 nm in size, and the pixels are 60 nm in size, the two are well-matched, thus the physical meaning of Δc is simply the misorientation angle of any two immediately adjacent nanocrystals. As shown by Beniash et al., in enamel, the c-axes of the crystals do not coincide with their long axes, thus the misorientation Δc is a measure of the crystalline misorientations and not a measure of rod direction [71].

We stress that the misorientation angle Δc is a direct, quantitative, and 3D measurement, and is not based on any assumptions. It is not at all dependent on the elongation direction of crystals, and is obtained by rotating the polarization direction of the illuminating x-ray photons. It is thus equivalent to polarized light microscopy of birefringent crystals in the visible range, but provides higher spatial resolution and surface sensitivity [102].

The distributions for each of the four model species (Fig. 6A-D) indicate that misorientation Δc is below 30° for nearly every pixel pair, so the overall misorientation is relatively small. Within the 30° angle spread of almost all adjacent pixel pairs, at least 95% of the misorientations are between 0 and 10°, meaning that these misorientations are much more frequent compared to the <5% abundance in the 10–30° range. Mouse enamel has the lowest mean misorientation, as all the crystals in each rod are nearly perfectly co-oriented near the DEJ, and less co-oriented near the tooth surface. In contrast, the intricately tangled bundles that make up parrotfish enameloid show the highest mean misorientation.

In order to assess how well the misorientation and hardness correlate, we performed a linear fit of all the data points. Since there is no theory yet behind this correlation, other non-linear fits were neither expected nor observed. For any linear fit, the correlation coefficient R provides a quantitative estimate of the goodness of the fit, varying from 0 to 1. In experiments involving biological or medical materials, which are typically characterized as complex multi-component systems, two parameters are considered correlated if their correlation coefficient exceeds the minimum threshold R > 0.30 [103]. For enamel(oid), despite its comparatively low R = 0.51 for the hardness and mean misorientation fit in Fig. 7A, these two parameters Section 4.5 can be still be considered correlated with a probability p = 0.000059, which corresponds to 4.0 σ significance (see Methods Section 4.5). The hardness increases linearly from 3 GPa to 7 GPa, as the mean misorientation increases from 2° to 8°. PIC maps of sheep, mouse, and parrotfish enamel(oid) used in the misorientation analysis were acquired from only one individual, whereas the human misorientation data came from three different individuals, labeled human tooth 1, human tooth 2, and human tooth 3 in the figure legend. For some of the points, we used multiple hardness and elastic modulus values for a single measured misorientation if multiple references measured H and E at similar locations. Nanoindentation H and E data for mouse were taken from Pugach et al. 2013 and White et al. 2007 [104,105]. Human enamel H and E data were taken from Braly et al. 2007, Cuy et al. 2002, Barbour et al. 2003, and Park et al. 2008 [79,84,86,106]. Parrotfish H and E data were taken from Marcus et al. 2017 [53]. We measured H and E for sheep and the human data points indicated in the legend, as described in the methods section. The elastic modulus (Fig. 7B) also (R = 0.44, p = 0.00098, 3.3 σ significance, correlates with the mean misorientation, linearly increasing from 58 GPa to 124 GPa, as the misorientation increases in the same 2°–8° range as the hardness. This result is not surprising per se, as the elastic modulus and hardness are related, but the slopes are very different:
0.4 GPa° for H vs. misorientation and 4.9 GPa° for E vs. misorientation. There are multiple points for human, sheep, and parrotfish enamel(oid)s in Fig. 7 because the hardness varies with location within each tooth, thus the hardness used corresponds to the value at the location where each specific PIC map was acquired. The H and E values obtained from sheep and the human-tooth-3 data points in Fig. 7 were acquired at precisely the same locations as their corresponding PIC maps and measured ΔC values. For some of the published PIC maps analyzed here, H and E values were not previously measured but were instead taken from the literature, carefully ensuring that they were measured at the same normalized distance from the DEJ as the PIC map was acquired and the measured ΔC.

Enamel(oid)s are consistently harder at the surface and softer near the DEJ, and misorientation follows the same trend. In both human and parrotfish enamel(oid), for which many literature data- points are available, gradual changes in misorientation correspond to gradual changes in hardness. For example, the tips of the parrotfish teeth in Fig. 4E and 4F are more misoriented and harder than corresponding areas near the DEJ in Fig. 4D and 4F. Unlike the other investigated species reported here, the hardness of mouse enamel does not appear to correlate with distance from the DEJ, as confirmed by White et al. 2007 [105].

In contrast to the mean misorientation, the Ca/P molar ratio does not correlate with hardness ($R = 0.04, p = 0.73$), as shown in Fig. 7C. For human enamel, the hardness data from Braly et al. 2007, Barbour et al. 2003, and Park et al. 2008 [79, 86, 106] were each paired with Ca/P ratios from Ngo et al. 1997, Kodaka et al. 1992, and Robinson, Weatherell, and Hallsworth 1971 [9, 11, 12] in Fig. 7C because these references only contained either hardness or Ca/P ratios, but not both. The human enamel data points taken from Cuy et al. 2002 [84], reported both hardness and CaO and P_2O_5 w% for the same tooth, so no additional references were necessary for these points. The CaO and P_2O_5 w% were converted into molar percentages using stoichiometry and the molar mass of Ca, P_2O_5, Ca, and P and dividing the Ca molar percentage by the P percentage. Ca/P ratios for mouse enamel were taken from Hu et al. 2015 [107] and hardness from Pugach et al. 2013 and White et al. 2007. [104, 105]. Sheep enamel Ca/P ratios came from Dios Teruel et al. 2015 and Barnicoat 1959 [8, 10] and the hardness was measured in the present study. For simplicity, all human H values have the same color in Fig. 7C. The Ca/P molar ratio is indicative of substitutions to calcium and phosphorus, the main components of apatite. For stoichiometric apatite, the Ca/P molar ratio is 1.67, and it is clear for the data in Fig. 7C that all of the data points values are between 90% and 100% of this ratio. These results demonstrate that there are few cation substitutions to calcium and none to phosphorus in enamel apatite, and that such substitutions, when they occur, are not correlated with hardness.

3. Discussion

Geologic apatite single crystals have been shown to have better mechanical performance along the c-axis, when indenting the (0001) facet, than perpendicular to the c-axis, when indenting the (1010) facet. Specifically, the (0001) facet has hardness, elastic modulus, and work hardening rate coefficient of 7.06 GPa, 150.38 GPa, and 18.82 GPa, respectively. The (1010) facet has 6.41 GPa, 143.56 GPa, and 14.47 GPa, respectively [108, 109]. Enamel has been shown to have anisotropic properties as described in Section 1.3, and therefore, two slightly misoriented crystals have slightly different hardness values. Previous molecular dynamics (MD) simulations [71] showed that crack deflection occurs at a smaller misorientation of 14.1°, and not at larger or zero misorientations. Thus, small (<30°) misorientation angles observed in all of the species reported here may also provide better crack-deflection and therefore higher fracture toughness, than for larger misorientation angles (>30°).

Within the smaller (<30°) misorientation angles, however, not all angles are equal, from a mechanical performance point of view.
The correlation between hardness and mean misorientation observed here in the 2°–8° angle range shows that the more misoriented, the harder the enamel is. There must therefore be a peak for mechanical performances, somewhere between 8° and 30°, which is optimal for hardness and toughness. Such angles do not occur in enamel, thus other systems must be explored to fully characterize these intriguing structure-properties relationships. For now, we can only constrain the position of the best angle to be within the 8°–30° range. Eight degrees is the highest mean misorientation angle observed in enamel(oid)s, where the H-misorientation correlation is still clearly increasing. 30° is the full width of the misorientation histograms in Fig. 6 measured in all enamel(oid)s, which is surprisingly similar to that observed in coral skeletons (35°) [100,101], in the vaterite spicules of ascidians (30°) [110], and in mollusk shell nacre (30°) [111,112].

In addition to misorientation, composition also has an appreciable impact on the hardness of enamel. Previous studies have shown that the mineral density is the highest at the tooth surface and decreases toward the DEJ [12,84], and Akkus et al. have shown that across teeth from different individuals, there is a strong corre-
lation between mineral content and hardness [113]. Other studies make the connection between decreased organic content and increased hardness for human [114] and mouse enamel [49], when comparing native enamel with enamel that has been bleached, or otherwise treated to remove organics.

Concentration of trace elements that are substituted in the apatite, fluorine in particular, have also been shown to vary in enamel [113,107] and to impact the hardness [115-117]. DeRocher et al. 2020 have even found compositional variation within a single nanocrystal where a single nanocrystal has a shell comprised of minimally substituted HAP and a core made of a magnesium enriched layer surrounding a sodium, fluorine, and carbonate enriched center. These compositional gradients are hypothesized to impact the mechanical resilience of enamel [131]. Thus, both composition and misorientation play a role in the mechanical properties of enamel, but further research is needed to determine the relative contributions of these two factors, and whether or not they are synergetic.

The correlation between hardness or and elastic modulus and misorientation observed in Fig. 7 reveals a structure-function relationship not previously considered. Interestingly, in human enamel, high concentrations of organic material are found at the interface of strongly misoriented crystals, similar to the 47° misorientation that did not deflect cracks in MD simulations [71]. It is well known that discontinuous mechanical properties at interfaces deflect cracks, e.g. at organic-mineral interfaces, as observed in sponge spicules, nacre, and sea urchin teeth [118-120]. The organic sheet at the rod-interrod boundaries in human enamel likely play similar roles where, according to MD simulations [71], this is most needed. While the misorientations observed here are relatively small (2°–8°), they represent a widespread nanoscale feature across vertebrate species, and thus likely further contribute to improving enamel’s mechanical performance. Just as the structure is hierarchical, so too are the crack deflection mechanisms. The small misorientations provide this crack deflection between adjacent nanocrystals, while the organics between the rods provide a crack deflection mechanism at the rod level. At higher structural levels, decussation patterns, placement of different enamel types, and even tooth shape itself provide enhanced mechanical performance [17,75,76,87].

4. Materials and methods

4.1. Sample preparation

The sheep tooth sample is an unworn lower left first molar (LLM1) from a Finn x Dorset cross breed ewe raised at the Cornell Sheep Program by Mike Thonney and Mary Smith. The age at death was 88 days. A tooth from a young sheep was used as it is less likely to have cracks, carries, or other defects due to age-related wear. The tooth was extracted with a Dremel saw, immersed in 70% ethanol, and embedded in polymethyl methacrylate. Embedded teeth were sectioned across the mesial lophs (analogous to cusps) and polished so that outer enamel surface, DEJ, dentin and pulp tissues are visible. A small portion at the tip of the loph was cut and as much polymethyl methacrylate as possible was trimmed from the cut tooth and re-embedded in EpoFix (EMS, Hatfield, PA) to prevent outgassing under high vacuum conditions.

One of the human molar samples not previously published was obtained from the Department of Oral Surgery, University of Pittsburgh School of Dental Medicine, and as such is exempt from IRB approval. The tooth was cut perpendicular to the biting surface and was embedded in EpoFix (EMS, Hatfield, PA).

Both teeth were ground with 320, 400, 600, and 1000 grit SiC paper (Buehler, Lake Bluff, IL) and polished with 300 nm and then 50 nm alumina suspensions (Buehler, Lake Bluff, IL), with 1 g/L calcium chloride used at each step to prevent dissolution. The samples were cleaned, air-dried, and coated in 1 nm Pt in area of interest and 40 nm elsewhere while spinning and tilting [121].

4.2. PIC mapping

PIC mapping was performed using the PEEM3 microscope at the 11.0.1 beamline at the Advanced Light Source (ALS) at Lawrence Berkeley National Lab. A stack of 38 images was acquired at 19 different x-ray polarizations [67–69,102] with minimal changing [122] and radiation damage [123]; one at 0.2 eV below the Ca L-edge peak 1 and the other at 0.2 eV above peak 1 [70]. The images were imported into PEEMVision and aligned if necessary, then the above peak images were digitally divided by the corresponding below peak images to increase the dichroic contrast, reducing the stack to 19 images, one for each polarization. Each pixel in the stack contains intensity versus polarization information that can be fit to a cosine squared, Malus’ law relationship. The fit parameters provide orientation information, namely the in-plane and out-of-plane angles with respect to the polarization plane of the x-rays that are incident from the right at an angle of 30° from the vertically mounted sample surface. The in-plane angles are displayed by the hues assigned in the color bar in Figs. 4 and 5. The out-of-plane angles are displayed such that crystals oriented directly into the x-rays and thus are fully out of the polarization plane are black and crystals that are oriented completely within the polarization plane are full brightness. Thus, a crystal with its c-axis oriented vertically with respect to the sample would appear as full brightness cyan in a PIC map as the vertical direction coincides in the image and polarization planes, but a crystal that appears as full brightness magenta and yellow in a PIC map would have their c-axes oriented −60° from vertical, 60° in front of the image plane and +60° from vertical, 30° behind the image plane respectively. PIC maps were created from the 19-image stack using the GG macros. For the human, mouse, and sheep enamel PIC maps, a large area composite map was created from an array of overlapping, individual PIC maps stitched together in Adobe Photoshop® CC 2017 [99].

4.3. Angular distances

The angular distance between adjacent pixels in PIC maps in Fig. 1 were calculated by taking the dot product of the in-plane and out-of-plane angles of adjacent pixels based on the RGB values of the pixels [71]. The data were plotted in MATLAB (MathWorks, Natick, MA) as follows: the angular distances binned every 0.5° and the frequency of each bin was expressed as a percent of the total number of pixel pairs to produce the histograms in Fig. 2, with the mean misorientation ∆c calculated and displayed directly on the plot. After importing all histograms into Adobe Photoshop® CC 2017, the mean misorientation ∆c was displayed on the plot with a thin black line at the appropriate location.

4.4. Nanoindentation

We used a Bruker Hysitron TI-950 Triboindenter equipped with a Berkovich probe at the University of Wisconsin-Madison (Madison, WI, USA) to measure the hardness and elastic modulus of one of the human tooth samples and the sheep tooth. We used a load-control multload protocol, which consisted of 9 partial loading curves; each having 4 segments: an initial 1 second hold, a loading segment, a 5 second hold, and a partial unloading to 30% of the max load, before moving to the next partial indent. The peak loads of the 9 partial indents were 160 μN, 360 μN, 640 μN, 1000 μN, 1440 μN, 1960 μN, 2560 μN, 3240 μN, and 4000 μN. To more accurately detect the surface and define the zeroed depth and
load, each nanoindentation was preceded by pre-nanoindent liftoff and approach segments. To account for any potential edge effects and displacements of the tooth sample into the compliant embedment during nanoindentation, the structural compliance method was utilized following references [124,125]. In brief, for each multifield nanoindentation the load-dependent stiffness was used to create a SYS plot (total compliance-load vs. load) and the structural compliance was calculated from its slope. The structural compliance was then used to correct the corresponding load-depth trace before the elastic modulus and hardness were calculated for each unloading segment using the Oliver and Pharr method [126]. To avoid surface roughness effects and the effects of probe tip imperfections, only the E and H values associated with contact depths over 100 nm were averaged together. Loading curves where the pre-nanoindent liftoff and approach segments did not overlap, or the load-depth trace had some other abnormality were excluded from the analysis.

4.5. Correlation, probability, and significance

We plotted the hardness, measured here or previously, versus the mean misorientation Δf for each PIC map, for 54 distinct H-Δf datapoints (n = 54). We fitted a line to the data using least squares linear regression. The correlation coefficient was calculated using KalediGraph® 4.5.2, which uses the following formula:

\[R = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2 \sum (y - \bar{y})^2}} \]

where \(x \) and \(y \) are the mean of the approximated normal Fisher distribution, \(R \) is the correlation coefficient, \(\sigma_x \) is the variance of the Fisher distribution, and \(n \) is the number of data points [127]. We used the parameters \(x \) and \(y \) in MATLAB (MathWorks, Natick, MA) using the built-in z-test function to test the null hypothesis (\(R = 0 \)) at a significance level of 5%. The value of \(p \) is calculated according to the following formula:

\[p = 1 - \frac{1}{\sqrt{2\pi \sigma_y}} e^{-\frac{(z - \sigma_z)^2}{2\sigma_z^2}} \]

where \(z \) and \(\sigma_z \) are defined above, \(x \) is an integration variable, and \(z = \frac{|z|}{\sigma_z} \) is the z-score, which is the number of standard deviations away from the mean with respect to a standard normal distribution with the mean = 0 and standard deviation \(\sigma = 1 \) (expressed as \(\sigma \)z significance). If the computed probability \(p \) is below 0.05 (\(p < 0.05 \)), then the null hypothesis is rejected, and the correlation coefficient being tested is significantly different from zero. The same mathematical procedure was used to compute the \(R \) and \(p \) values for E vs. Δf (n = 53) and H vs. Ca/P (n = 79) and thus determine their significance.

Declaration of Competing Interest

The authors declare no conflict of interest.

Acknowledgements

We thank Jerry C. C. Chan for generously preparing and sending us the fluorapatite dumbbells in Fig. 5C. PG acknowledges 80% support from the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, United States, under Award DE-FG02-07ER15899, and 20% support from NSF, United States Grant DMR-1603192. The PIC mapping experiments were done at the Advanced Light Source, which is supported by the Director, Office of Science, Office of Basic Energy Sciences, US Department of Energy, United States under Contract No. DE-AC02-05CH11231. The nanoindentation experiments were performed with the help of Julie Morasch using the facilities and instrumentation at the UW-Madison Wisconsin Centers for Nanoscale Technology (wcnt.wisc.edu) partially supported by the NSF, United States through the University of Wisconsin Materials Research Science and Engineering Center DMR-1720415.

References

[1] G. Cuvier, Animal Kingdom, arranged according to its organization, forming the basis for a natural history of animals, and introduction to comparative anatomy, Ameon Corner (1840).

