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Abstract 
An approach for implementing statistical process control and other statistical methods as a cost-savings measure in the 

treated-wood industries is outlined. The purpose of the study is to use industry data to improve understanding of the 
application of continuous improvement methods. Variation in wood treatment is a cost when higher-than-necessary chemical 
retention targets are required to meet specifications. The data for this study were obtained in confidence from the American 
Lumber Standard Committee and were paired, normalized assay retentions for charges inspected by both the treating facility 
and auditing agencies. Capability analyses were developed from this data for three use categories established by the 
American Wood Protection Association (AWPA), including UC3B (above ground, exterior), UC4A (ground contact, 
freshwater, general use), and UC4B (ground contact, freshwater, critical structures, or high decay hazard zones). Agency and 
industry data indicate that between 4.45 and 9.82 percent of the charges were below the lower confidence limit of the passing 
standard (LCLAWPA), depending on use category. A Taguchi loss function (TLF), which is quadratic based and decomposes 
the monetary loss into shift and variation components, was developed to estimate the additional cost due to process variation. 
For example, if a treatment input cost of $1.00/ft3 is assumed for UC3B, reducing the variation in total retention allows 
lowering treatment targets, e.g., 1.45 to 1.38, reducing costs to $0.76/ft3 . The study provides some important continuous 
improvement tools for this industry such as control charts, Cpk, Cpm capability indices, and the one-sided TLF. 

Currently, wood treatment facilities must meet mini-
mum passing standards for wood preservative penetration 
and retention of treated wood (as defined by the American 
Wood Protection Association [AWPA] and governed by the 
American Lumber Standards Committee [ALSC]). This 
article focuses only on the preservative retention aspect of 
quality control for treated lumber and not penetration. 
Treating facilities determine the retention of each charge by 
removing 20 or more increment cores from different pieces 
in the charge (‘‘batch’’) and combining them to obtain a 
single composite assay sample. The preservative content 
(retention) value of this sample must be equal to or greater 
than the minimum for that product, as stated in the relevant 
standard. Third-party agencies sample treatment charges in 
the same way, but the key metric used for third-party 
agencies evaluating retention compliance over a range of 
charges is the  lower  confidence  limit  (LCLAWPA) a
described by the AWPA M22-18 standard (AWPA 2019). 
The LCLAWPA is the lower confidence limit of the median 
retention of recent charges calculated using a one-tailed 95 

s  

percent critical value. This LCL is compared with the 
standardized minimum retention. This standard LCL or 
‘‘minimum specification’’ is derived as a statistical lower 
bound assuming the standard normal distribution and is 
based on the ffiffiffi theory of parametric confidence intervals (i.e., p 
x ¯ 6 (s/ n)za). For the typical monitoring situation in the 
standard (AWPA M22), the previous 20 samples are 
considered and a small sample adjustment is used 
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(ta ¼ 0.05, n � 1 ¼ 19 ¼ 1.729) for a one-sided bound, which is 
to provide an indication if the typical, immediately 
preceding production is above specification. As more 
samples are included using this small sample interval 
adjustment, the long-term behavior of the LCLAWPA 

standard derived using a Z-score of 1.729 should contain a 
cumulative probability of p(Z) ¼ 0.9581 above the 
LCLAWPA, assuming normal data distribution. LCLAWPA 

derived from confidence limits used for enumerative studies 
will be narrower than those of prediction intervals, which 
are common for process or analytical studies. Prediction 
intervals are wider than confidence intervals given the 
incorporation of process variation for future sampling 
(Deming 1975, Hahn 1995). Resampling of retention values 
after a failure can result in a nonnormal distribution if the 
resampled values are included in the original data. 
Resample retention values should be maintained in a 
separate data file, and should be flagged as a resample. 
This will avoid artificially skewing the distribution under-
lying the determination of the LCLAWPA. 

There are approximately 140 plants and roughly 700 
active production categories in the treated-wood industry 
that are monitored by inspection agencies using this 
LCLAWPA standard (Vlosky 2009). The LCLAWPA standard 
and producer metrics of performance are used as quality-
control techniques for adhering to a conformance standard, 
and do not necessarily promote continuous improvement 
and variation reduction (e.g., statistical process control 
[SPC]). This makes the use of the LCLAWPA a conformance 
test and creates a treatment process that is reactive to 
problems but not preventative. This conformance test and 
reactive actions, such as the retreatment of charges, may 
result in additional costs. 

SPC methods can benefit manufacturing industries by 
identifying common sources of variation that influence 
product quality and by promoting proactive actions for 
continuous improvement. The fundamental premise of 
continuous improvement is the reduction of product and 
process variation. The goal of this study was to quantify the 
natural variation (also called common-cause variation) and 
the special-cause variation associated with the measure of 
the average retention for treated residential lumber. This 
article builds upon the study by Young et al. (2017) by 
providing a more detailed assessment of distribution fitting 
and variability analyses, and provides a monetary assess-
ment of cost using the Taguchi loss function (TLF). The 
purpose of the study is also to highlight statistically-based 
approaches in manufacturing that can help producers reduce 
risk from warranty claims, reduce rework, and reduce costs. 
These methods are necessary to improve the short-term 
competitiveness of the industries and are crucial to ensuring 
a viable sustainable strategy for long-term success. 

Historical Perspective 
Improving product quality and reducing sources of 

process variation that lead to unnecessary costs are common 
goals for many companies. As Lawless et al. (1999) notes, 
‘‘Fundamental to the improvement process of reducing 
product and process variations is to first quantify var-
iations[. . .]’’; also see Young (2008) and Young and 
Winistorfer (1999). Many statistical methods exist for 
quality improvement through the quantification and under-
standing of sources of variation (Hahn 1995, Lawless et al. 
1999, Woodall 2000). However, Deming (1975) urges the 

distinction between enumerative and analytical studies. 
Enumerative studies deal with characterizing an existing, 
finite, unchanging target population by sampling from a 
well-defined frame, e.g., analysis of variance, confidence 
intervals, etc. (Hahn 1995). In contrast, the analytical 
studies more frequently encountered in industrial applica-
tions focus on action that is taken on a process or system, 
the aim being to improve the process in the future, e.g., 
statistical prediction intervals, control charts, etc. (Deming 
1975, Hahn 1995). SPC uses control charting and other 
statistical methods to define improvement of the process and 
final product quality (Stoumbos et al. 2000, Woodall 2000, 
Young 2008). As Deming (1975) articulated, ‘‘Predicting 
short-term process outcomes is a powerful aspect of the 
control chart and SPC.’’ Shewhart control charts (Shewhart 
1931) have been used extensively for over 50 years. 
However, as noted by Stoumbos et al. (2000), ‘‘The 
diffusion of research to application is sometimes slow.’’ 
Following Deming’s study characterization, we view this 
study as providing an initial evaluation of statistical 
analytical methods that can lead to process improvement 
and improved product quality. 

An extensive review of the published literature did not 
reveal any studies that document the application of SPC and 
other statistical methods as improvement tools for the 
treated-wood industries. Even though there is considerable 
literature on the application of SPC for the lumber industry 
(Brown 1982; Maness et al. 2002, 2003;Young et al. 2007), 
this study addresses a noteworthy gap in the literature. The 
SPC Handbook for the Treated Wood Industries by Young 
et al. (2019) provides more detailed information about 
implementing SPC. 

Material and Methods 
Data sets 

The data for this study were from the period 2014 to 2016 
and were obtained in confidence from the ALSC auditing 
agencies accredited for treating facilities. The agencies 
provided paired assay retentions for charges that had been 
inspected and measured by both the treating facility and the 
auditing agencies. The assay retentions were normalized to 
protect confidentiality. ‘‘Paired’’ in this study is defined as 
matched charges of industry- and association-tested wood. 
Retention was rescaled to the AWPA standard retention to 
protect confidentiality but maintain variation, i.e., the 
analyses were performed by use category and did not reveal 
any source (chemical type). The three use categories with 
the largest N in the data set were analyzed; this includes 
UC3B (above ground, exterior, exposed, or poor water 
runoff, general use), UC4A (ground contact or freshwater, 
general use), and UC4B (ground contact or freshwater, used 
in critical structures or high decay hazard zones). The 
sample sizes of the three use categories were: (1) N ¼ 4,259 
records for UC3B; (2) N ¼ 2,942 records for UC4A; (3) N ¼ 
196 records for UC4B. 

Estimating the probability density functions 
A probability density function (pdf) is used to specify the 

probability that a random observation associated with a 
random variable (e.g., total retention) will fall within a 
specified range of values. For example, for a random 
observation from the standard normal pdf, N(0,1), the 
probability of it falling between �3 and 3 is 0.9973, the 
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Figure 1.—Illustration of Shewhart control chart and statistical foundations. 

probability of it falling between �2 and 2 is 0.9545, and the 
probability of an observation falling below (or, alternative-
ly, falling above) a sample mean is 0.5. Information criteria 
can be used to compare potential pdfs that may represent a 
sample’s underlying distribution (Anderson 2008). Two 
criteria, the Akaike information criterion (AIC) and the 
Bayesian information criterion (BIC), were used to assess 
the appropriateness of various pdfs as selected from those 
commonly seen in industrial settings. The AIC (Akaike 
1974) is: 

AIC ¼ 2k � 2lnðL̂Þ ð1Þ 
where L̂ is the maximized value of the likelihood function of 
the pdf model and k is the number of free parameters to be 
estimated. The preferred model is the one with the minimum 
AIC. AIC rewards goodness of fit but it also includes a 
penalty that is an increasing function of the number of 
estimated parameters. A second-order version that adjusts 
for sample sizes (n ¼ number of observations), AICc, is  a  
common output in statistical software, and can be calculated 
from AIC (Anderson 2008): 

2kðk þ 1Þ 
AICc ¼ AIC þ ð2Þ 

n � k � 1 

The BIC (Findley 1991) or Schwarz criterion (also known 
as the SBC or SBIC) value is: 

BIC ¼ lnðnÞk � 2lnðL̂Þ ð3Þ 
where L̂, n, and k are as defined previously. Similarly to 
AIC, the preferred model is the one with the minimum BIC. 
The information criteria and estimated parameters for each 
pdf were obtained as part of the maximum likelihood 
procedures using JMP software (JMP version 14 2019). 
Ranking and calculation of Akaike weights (model 
probabilities) from the information criteria values help 
differentiate the hypothesized pdfs (Anderson 2008). 

Control charting methods 
Individuals and moving range charts were used to 

quantify the natural variation (or common-cause variation) 
and detect special-cause variation (or ‘‘events’’) of the 
retention values (Shewhart 1931). The Shewhart control 
chart is based on the theory of the statistical prediction 
interval for application in processes (i.e., analytical studies). 
The control chart is a simple but powerful tool that 
distinguishes not only between two types of variation, but 
also is a temporal graphic of the state of the process and is 
very helpful in detecting shifts in the process that may cause 

Figure 2.—Illustration of symmetric Taguchi loss function. LSL 
¼ lower specification level; USL ¼ upper specification level. 

Figure 3.—Illustration of one-sided Taguchi loss functions, 
‘‘smaller the better.’’ LSL ¼ lower specification level. 
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Figure 4.—Illustration of histograms relative to the lower confidence limit as described by the American Wood Protection Association 
M22-18 standard (LCLAWPA; equates to lower specification level [LSL] in plots) standard for UC3B with a box plot and quantile plot. 
Box plot includes box marking the interquartile range (IQR) with midline at the median and inner symbol marking the mean; whiskers 
designate up to 1.5 by IQR and individual points are measurements beyond the whiskers. The solid line on the quantile plots 
indicates a normal fit to the data, whereas the dashed lines are 95 percent confidence envelopes for a normal fit. An extreme outlier 
was removed for this analysis. 

the manufacture of defective product. The Shewhart control 

chart general form is: 

X̄63s ð4Þ 

where X ¯ is the process average and s is the process standard 

deviation (Fig. 1). Ideally, assuming an underlying normal 

distribution, this interval would contain 99.73 percent of the 

process values. Given that s is a biased estimator for the 

population standard deviation (r), the unbiased estimator of 

r is used: 
P 

r̂ ¼mR/d2, where mR ¼ n jxi � x2 � n i¼ i 1j / ( � 1) 

and d2 ¼ 1.128 for a subgroup size of two for estimating a 

moving range value. Therefore, Equation 4 reduces to: 

X̄62:66ðmRÞ ð5Þ 
where X ¯ is the process average and mR is the average 

moving range. The LCL ¼ X ¯ � 2.66(mR) and upper control 

limit (UCL) ¼X ¯þ2.66 (mR). The moving range chart offers 

further assessment of process variability. The center line is 

given by mR and control limits are constructed and reduced 

to LCL ¼ 0 and UCL ¼ 3.267(mR) for subgroups of size two 

(Montgomery 2012). 

Capability analyses 
Capability analyses assess the potential for product 

conformance to specifications by comparing the natural 
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Figure 5.—Quantile–quantile plot of plant retention (PlantRet_Norm) and agency retention (AgencyRet_Norm). 

Table 1.—Akaike information criterion adjusted for sample size (AICc) and Bayesian information criterion (BIC) statistics by 
distribution and use category type for the agency data (all two-parameter versions). 

Distribution AICc BIC Di ¼ AICci � min(AICci) Akaike weighta Median 5th percentile Failure probabilityb 

UC3B 

Loglogistic �217.33 �204.62 0.00 1.00 1.407 1.071 0.024 

Generalized gamma 38.53 57.59 255.86 0.00 1.401 1.078 0.015 

Log generalized gamma 40.01 59.07 257.34 0.00 1.403 1.078 0.016 

Largest extreme value 123.27 135.98 340.60 0.00 1.397 1.079 0.013 

Logistic 139.31 152.02 356.64 0.00 1.415 1.019 0.044 

Lognormal 169.87 182.58 387.20 0.00 1.412 1.059 0.024 

Frechet 732.93 745.64 950.26 0.00 1.385 1.069 0.012 

Normal 1188.45 1201.16 1405.78 0.00 1.435 0.977 0.059 

Weibull 2593.40 2606.11 2810.73 0.00 1.417 0.757 0.150 

UC4A 

Loglogistic �1218.14 �1206.17 0.00 1.00 1.332 1.044 0.030 

Logistic �1172.68 �1160.71 45.46 0.00 1.338 1.012 0.045 

Log generalized gamma �1116.48 �1098.53 101.66 0.00 1.335 1.034 0.032 

Generalized gamma �1089.53 �1071.58 128.61 0.00 1.336 1.032 0.033 

Lognormal �1068.90 �1056.93 149.24 0.00 1.331 1.037 0.030 

Normal �1012.82 �1000.85 205.32 0.00 1.346 1.011 0.045 

Largest extreme value �679.04 �667.04 539.10 0.00 1.325 1.026 0.034 

Weibull �405.47 �393.50 812.67 0.00 1.350 0.882 0.105 

Frechet 621.40 633.37 1839.53 0.00 1.334 0.974 0.071 

UC4B 

Loglogistic �1.60 4.89 0.00 0.42 1.319 0.978 0.061 

Logistic �1.02 5.48 0.59 0.31 1.329 0.934 0.079 

Log generalized gamma 1.30 11.01 2.90 0.10 1.324 0.960 0.073 

Generalized gamma 1.94 11.65 3.55 0.07 1.324 0.959 0.074 

Normal 2.73 9.23 4.34 0.05 1.335 0.939 0.082 

Lognormal 2.82 9.32 4.42 0.05 1.314 0.971 0.069 

Largest extreme value 19.25 25.75 20.86 0.00 1.302 0.967 0.075 

Weibull 22.52 29.01 24.12 0.00 1.346 0.848 0.122 

Frechet 63.94 70.44 65.55 0.00 1.288 0.953 0.093 

a Akaike weight model probability exp( 0.5 ) /  
P

¼ ¼ � D 9 
i j exp( 0.5 ) is calculated relative to each use category grouping; see Equation 2. ¼1 � Dj

b The probability of failure at the lower confidence limit as described by the American Wood Protection Association M22-18 standard (LCLAWPA) for the 

assumed probability density function. 
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Figure 6.—Illustration of long-term variation for UC3B individuals and moving range (ImR) chart of normalized charge retention. The 
points in boxes labeled as a ‘‘1’’ violate run rule #1 (out of control), and points in boxes labeled as a ‘‘2’’ violate run rule #2 (eight 
consecutive points above or below the average). 

tolerances (NT) of the product with the engineering 
tolerances (ET), i.e., ET ¼ upper specification limit (USL) 
� lower specification limit (LSL) and NT ¼ 6s, where s is 
the process standard deviation. Specification limits are 
typically established externally to the process and are not a 
mathematical function of the control limits, although 
capability analyses are most useful when the data are in a 
state of statistical control, i.e., data are within the upper and 
lower control limits as defined in Equation 5. Capability 
analyses are summarized by indices and indicate if a product 
is capable of meeting the desired specifications. The most 
common capability indices are: 

USL � LSL 
Cp ¼ ð6Þ 

6ðmR= d2Þ 

�
X ¯ � LSL USL � X ¯

Cpk ¼ minðCpl; CpuÞ ¼ arg min ; 
3ðmR=d2Þ 3ðmR= d2Þ 

ð7Þ 
and the Taguchi index below (Taguchi et al. 2005) is 
recognized by many (Boyles 1991, Taguchi 1993), 

USL � LSL 
Cpm ¼ q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð8Þ 

6 ðX ¯ � TÞ2 þ ðmR= 2 
d2Þ

where T ¼ target. Cp does not accommodate a process that is 

not centered between the LSL and USL; thus, the other 
indices were introduced to better indicate process perfor-
mance in these types of situations. Cp, Cpk, and Cpm 

compare engineering tolerances to short-term, or within-, 
process variation. Note, process performance indices (Pp, 
Ppk ¼min(Ppl,Ppu), Ppm) are similar to those of Equations 6, 
7, and 8, where s is used instead of mR/d2 (i.e., s represents 
long-term or overall variation). Only values for the Cp, Cpk, 
and Cpm are discussed in this article. A simulation is 
presented from the results of the capability analyses to 
estimate chemical dosing target changes necessary for 100 
percent conformance to the LCLAWPA standard. Even 
though 100 percent conformance may not be achievable in 
the short term, the simulation highlights the importance of 
reducing variation to sustain business competitiveness. 

Taguchi loss function 
The TLF quantifies the monetary loss incurred by 

variation in the product. The economic loss for treated 
wood is a function of the amount of extra chemical 
treatment used (target treatment level above specification) 
and the amount of time for retreatment (if it has been 
determined that a charge has treated below specification). 
Undertreatment may represent a higher monetary loss 
(warranty claims) than overtreatment (additional chemical 
costs). Both represent direct variable costs due to poor 
quality and are influenced by the variability in the process 
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Figure 7.—Illustration of short-term variation individual control chart for UC4B industry total retention data. 

and raw material. Taguchi et al. (2005) developed a two-
sided loss function ‘‘nominal-the-best,’’ where the target is 
centered within a specification range, which estimates 
economic loss for a quality attribute that has both lower 
and upper specifications, e.g., chemical retention (Fig. 2). 
Taguchi’s nominal-the-best loss function is: 

L ¼ kðy0 � Þ2 
m ð9Þ 

where L is the economic loss; k is the cost constant, k ¼ A0/ 
(SL – m)2; A0 is the cost of operating at a specification limit, 
SL; m is the operational target value of the quality 
characteristic (e.g., retention); and y0 is the actual value at 
the SL (e.g., 0.15 lb/ft3). Nutek Inc. (2014) illustrates an 
approach to estimating A0. Taguchi et al. (2005) also 
developed a one-sided loss function ‘‘smaller-the-better’’ 
with only one lower or upper specification (e.g., the desired 
value of retention percentage should be as small as possible 
near the LCLAWPA standard; see Fig. 3). Taguchi’s smaller-
the-better loss function is: 

L ¼ kðr2 þ y 2 A
0Þ; 

0 
where k ¼ ð10Þ 

y2 
0 

Operational targets can be reduced assuming the smaller-
the-better TLF only if the variance of the process or product 
(e.g., total retention) is first reduced (Young et al. 2015). 
Most producers run the smallest possible target to minimize 
cost, but they must also avoid producing a product below the 

LCLAWPA standard, which adds lost time due to retreatment, 
and may be necessary to avoid warranty claims. Further 
asymmetric or discontinuous loss functions are possible that 
can address unbalanced costs associated with nonequidistant 
specification limits (e.g., Metzner et al. 2019), but are not 
explored at this time given that LCLAWPA is a one-sided 
LSL under the assumption of smaller-the-better TLF. 

Results 
Probability density functions 

There were distinct differences between the industry and 
agency values of normalized retention, including the 
agencies measuring fewer below-specification measure-
ments but more just above specification, and the agencies 
also measuring lower at the higher end of the measurement 
scale, except at the extreme (Fig. 4). A quantile–quantile 
plot of the industry and agency values of normalized 
retention reveals some distinct differences in retention 
values .3 (Fig. 5). Industry treating plants calibrate their 
instruments to agency standards; however, it is plausible 
that additional variability is introduced at the plants that is 
not incorporated in measurements made by the regulating 
agency instruments. Each plant presumably has its own 
operators and instruments, whereas the agencies have fewer 
total operators/instruments. There could also be differences 
in the collection or grinding of samples in preparation for 
the measurement process. The differences may be due to the 
resampling without replacement that occurs with the 
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Figure 8.—Capability analyses for agency and plant data for product UC3B with percentage below lower confidence limit standard. 

industry samples when the first, second, or third sample falls 
below the LCLAWPA standard and additional samples are 
then taken from the same batch of treated wood. Young 
(2012) highlighted that skewed distributions can occur from 
resampling for the engineered-wood industries. The differ-
ence may also be due to batches of treated lumber that are 
retreated and the original measurements were not main-
tained at the plant. 

On the basis of the minimum AICc and BIC values, the 
best pdf for total retention for each of the use categories 
UC3B, UC4A, and UC4B was the loglogistic (or Fisk 
distribution); see Table 1. For UC4B, the loglogistic had 
lower minimum AICc and BIC, but on the basis of Akaike 
weights, there is also supporting evidence for the logistic 
pdf. The loglogistic tends to be skewed, whereas the logistic 
is symmetric but heavier tailed than the normal distribution. 
For each use category, the commonly assumed normal, or 
Gaussian, pdf was ranked low among the nine different 
distributions that were tested. Depending on the goal of a 
project, methods robust to deviations from the normality 
assumption may need to be considered for any statistical 
analyses, including grouping data into subgroups if 
appropriate. It should be kept in mind that the data are a 
mixture across manufacturers, preservatives, and product 
sizes, and the resulting industry-wide distribution could be a 

result of the amalgamation of heterogeneous distributions. 
This type of data mixture was noted by Zeng et al. (2016) 
for the wood composites industries, but as previously noted, 
the literature does not document this for the treated-wood 
industries. 

The loglogistic pdf has been shown to arise as a result of 
mixture distributions and is useful in modeling survival data 
(Crowder et al. 1991); for example, it is applicable in 
modeling situations where the rate at which something is 
occurring increases initially and then after some time begins 
to decrease (Al-Shomrani et al. 2016). It may reflect that the 
left tail of the distribution drops more abruptly because of 
retreatment of underretention charges. Selecting the best fit 
for a pdf for total retention is important when establishing 
useful standards, which are typically derived by applying 
parametric estimates and confidence intervals to an 
industrial data set. For example, this is illustrated by 
comparing the 5th percentile estimates across the pdfs. The 
failure probabilities at the LCLAWPA by pdf are distinctly 
different and illustrate the usefulness of fitting the 
appropriate pdf for the data; this is especially important 
when developing accurate standards for producers. Use 
categories UC4A and UC4B have higher failure probabil-
ities relative to UC3B and can be useful to direct continuous 
improvement efforts for reducing variation to lower the 
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Figure 9.—Capability analysis for agency and plant data for product UC4A with percent below lower confidence limit standard. 

failure probability at the LCLAWPA. It is important to note 
for this data that a normal pdf has higher failure 
probabilities relative to the loglogistic. 

Quantifying the process variation 
Control charts were developed for use category UC3B to 

illustrate the different signals from control charts for long-
term and short-term process variation over time (see 
examples in Figs. 6 and 7). Long-term variation may typify 
the variation experienced across the broader consumer 
markets, where short-term variation may exemplify varia-
tion experience by a more regionalized or local market 
group. Eliminating or reducing special-cause variation is 
typically the starting point of any continuous improvement 
effort where root-cause analyses should reveal the events, 
e.g., shift change, startup from downtime, sensor failure, 
etc., that are not part of the normally expected system 
variation. The process in the short term is predictable, 
illustrating the usefulness of the control chart, whereas the 
process in the long term is not predictable when special-
cause variations and statistical runs are occurring. Control 
charting is an important first step for the treated-wood 
industry to quantify variation, identify special-cause varia-
tion, and to prevent both overtreatment and the need for 
retreatment. 

Process capability 
Capability analyses were performed for three use 

categories to assess the capability of the total retention 
samples relative to the LCLAWPA standard. Since the 
LCLAWPA standard is defined in quality management as a 
one-sided lower specification (LSL ¼ LCLAWPA), the Cpl 

index is used to determine capability; see Equation 7. A 
capability index value of 1 or greater indicates that the 
process meets specifications. For the agency data set the 
indices by use category were: UC3B, Cpl ¼ 0.807 (5.91% 
out-of-specification); UC4A, Cpl ¼ 0.723 (4.45% out-of-
specification); and UC4B, Cpl ¼ 0.587 (8.26% out-of-
specification). For the industry data set, the indices by use 
category were: UC3B, Cpl ¼ 0.937 (5.16% out-of-specifica-
tion); UC4A, Cpl ¼ 0.802 (4.44% out-of-specification); and 
UC4B, Cpl ¼0.694 (9.82% out-of-specification); see Figures 
8, 9, and 10, respectively. Montgomery (2012) indicated 
that an acceptable Cpk for a one-sided limit (e.g., LCLAWPA 

standard) is Cpk � 1.25. Harry and Schroeder (2000) 
provided an example for two-sided limits (e.g., moisture 
content) where Cpk � 1.33 is an acceptable standard to 
achieve ‘‘Six Sigma’’ quality. The Cpk indices developed for 
the use categories in this study illustrate a significant gap as 
noted by Harry and Schroeder (2000). 
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Figure 10.—Capability analysis for agency and plant data for product UC4B with percent below lower confidence limit standard. 
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The differences in the Cpl indices and the percent out-of-
specification between the industry and agency data are due 
to the differences in the variance estimates. Variation 
displayed as StDev in Figures 8, 9, and 10 is the overall 
standard deviation that is used for the process performance 
indices, PPL (¼Ppl) and PPK (¼Ppk), given the large sample 
sizes, and is represented in the normal curve as a solid line; 
CPL(¼Cpl) and Cpk use the mR/d2 to estimate short-term or 
within-group variation (agency or industry) and are 
represented in the normal curve as a dotted line. 

Capability analyses are a useful tool for estimating the 
required shift in operating target or process mean to attain 
essentially 100 percent conformance. As an example, a shift 
in the process mean of normalized retention to 1.853 (;30% 
increase from 1.435) for the normalized agency data set for 
use category UC3B would result in 100 percent confor-
mance to LCLAWPA standard (Fig. 11). A shift in the process 
mean to 1.698 (27% increase) for the normalized agency 
data set for use category UC4B would result in 100 percent 
conformance to LCLAWPA (Fig. 12). Although this shift 
would ensure consistent adherence to the AWPA standard 
(LCLAWPA), such a shift is not an appropriate long-term 
strategy for business competitiveness; such an increase in 
the chemical additive target would greatly increase costs. 
An increase in target retention would also have other 

detrimental effects such as higher leaching amounts, 
increased disposal, etc. Capability analyses are an essential 
early step to assess NT relative to ET. As Ohno (1988) 
noted, ‘‘Where there is no standard there can be no Kaizen 
(improvement).’’ 

Taguchi loss function 
The additional costs from variation were estimated using 

the one-sided TLF for the three use categories (Table 2). 
The operational targets used in Table 2 were equated with 
the process average and the distance from the average to the 
LCLAWPA standard, which is a function of the size of s, i.e., 
the higher the s, the greater the target window. The initial s 
and X ¯ ¼ Target in Table 2 (upper cells highlighted in bold) 
were calculated from the original data set values for the 
three use categories. The TLF costs illustrate that for all 
three use categories, substantial savings can be attained by 
focusing on variation reduction; see Metzner et al. (2019). 
For example, lowering the treatment target for UC3B from 
1.45 to 1.38 given a variation reduction of 5 percent from s 
¼0.277 to s ¼0.263 results in a cost savings of 24 percent. If 
the s can be reduced further to s ¼ 0.249, costs savings of 44 
percent occurs. The same improvement scenarios are 
applicable for both the UC4A and UC4B use categories 
(Table 2). 



Figure 11.—Shift in mean from 1.435 to 1.853 for normalized agency data set to attain essentially 100 percent conformance to lower 
confidence limit standard for product UC3B. 

A treatment producer does not necessarily control all 
input costs. The costs of chemicals and wood are dictated by 
market conditions and a producer’s volume. However, the 
producer’s continuous improvement efforts are under 
management’s control, and influence the variation at the 
plant. Some things the treater can control that might 
influence variation include source of supply (treatability 
can vary by geographic source), moisture content (verifying 
proper drying), grouping by similar dimension, and 
pressure-treatment parameters. The TLF used in this study 
illustrates the economic justification for dedicating resourc-
es at the plant level toward variation reduction and 
continuous improvement. 

Conclusions 
This study provides an example of applying SPC tools to 

wood-treatment industry data to identify strategies for 
increased standard conformance and lowering production 
costs. A large paired data set of normalized assay retentions 
for charges from industry and agency samples indicated that 
the best distribution was the loglogistic pdf. This may have 
implications when using methods with strict normality 
assumptions and may be important for agencies when 
establishing accurate standards when using the lower 
quantiles of a distribution. The capability analyses indicated 
that the agency and plant data had anywhere from, 
respectively, 4.45 to 8.26 percent and 4.44 to 9.82 percent 
below the LCL of the passing standard (LCLAWPA), 

depending on use category. A TLF was used to estimate 

the additional costs due to process variation. The TLF 

illustrated that if a focus on variation reduction led to 

operational retention target reductions, substantial cost 

savings could be realized. 

The study addresses a research gap in documenting the 

applications of SPC and other statistical methods as 

improvement schemes for the treated-wood industries. 

Application of the methods outlined in this article will be 

dependent on the company and strategies that include 

continuous improvement. Control charts are a straightfor-

ward tool for implementation at the operations level of the 

plant and allow operators to monitor the stability of the 

process, and provide useful alerts for process instability and 

unanticipated events. The capability indices such as the Cpk 

and Cpm are useful methods for the quality managers to 

assess improvement relative to specifications. The TLF is an 

accepted method for the quality management and senior 

executives to quantify the cost of poor quality due to 

variation. A useful handbook for implementing SPC was 

developed as part of this study as cited earlier and it is a 

possible template for the treated-wood industry. An SPC 

workshop was conducted at the 2018 AWPA annual 

meeting and more are anticipated in the future. It is feasible 

that affordable customized software will be developed for 

this industry that will include control charting, TLF, and 

other continuous improvement tools. 
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Figure 12.—Shift in mean from 1.335 to 1.698 for normalized agency data set to attain essentially 100 percent conformance to lower 
confidence limit standard for product UC4B. 

Table 2.—A comparison of treatment chemical cost savings 
using the Taguchi loss function with variation reduction and 
appropriate target retention   reduction, assuming $1.00/ft3 to 
treat wood. 

Use category and parameter Valuea 

UC3B 

Standard deviation 0.277 0.263 0.249 0.236 

Target required to meet LCL b 
AWPA 1.45 1.38 1.31 1.24 

Cost/ft3 ($) 1.00 0.76 0.56 0.41 

Percent reductionc 0 24 44 59 

UC4A 

Standard deviation 0.200 0.190 0.180 0.171 

Target required to meet LCLAWPA 1.34 1.27 1.21 1.15 

Cost/ft3 ($) 1.00 0.71 0.49 0.33 

Percent reduction 0 29 51 67 

UC4B 

Standard deviation 0.239 0.227 0.215 0.205 

Target required to meet LCLAWPA 1.31 1.24 1.18 1.12 

Cost/ft3 ($) 1.00 0.73 0.52 0.37 

Percent reduction 0 27 48 63 

a Data in boldface were calculated from the original data set for each use 

category and represent necessary targets given the current standard 

deviation to meet LCLAWPA at the status quo. 
b LCLAWPA ¼ lower confidence limit as described by the American Wood 

Protection Association M22-18 standard. 
c Percent savings from original target. 
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