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Abstract 
A wealth of forensic wood identifcation technologies has been developed or 
improved in recent years, with many attempts to compare results between technolo-
gies. The utility of such comparisons is greatly reduced when the species tested with 
each technology are diferent and when performance metrics are not calculated or 
presented in the same way. Here, a species-level XyloTron computer vision model is 
presented along with a side-by-side comparison for species- and genus-level identi-
fcation of the 10 species of Meliaceae studied by Deklerck et al. using mass spec-
trometry. The species-level accuracies of the XyloTron model and the mass spec-
trometry models are comparable, while the genus-level accuracy of the XyloTron 
model is higher than that of the mass spectrometry model. The paper concludes with 
a call for better practices to compare disparate forensic wood identifcation technolo-
gies from a performance driven perspective. 
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Introduction 

A wide range of contexts drives the need for scientifcally rigorous forensic 
wood identifcation technologies, including the identifcation of cultural prop-
erty (Rufnatto et al. 2010; Ostapkowicz et al. 2017; Guo et al. 2019), determi-
nation of structure–property wood technology relationships (Wiedenhoeft and
Kretschmann 2014), analysis of evidence from criminal forensic contexts (Gra-
ham 1997), and investigation of forest products supply chains (Wiedenhoeft et al. 
2019). With the sustained interest in enforcing national and international laws
and treaties to control trade in endangered species and ensure legal timber trade,
evaluating the validity, reliability, and contextual applicability of various wood
forensic techniques is more important than ever.

The primary scientifc questions for any forensic wood identifcation technol-
ogy are geographic origin and botanical identifcation. The former question has
been primarily addressed by stable isotope methods (Kagawa and Leavitt (2010)
and reviewed in Meier-Augenstein (2019)], DNA-based methods (e.g., Degen 
et  al. 2013; Vlam et  al. 2018), and chemometric methods (Bergo et  al. 2016; 
Finch et  al. 2017; Ma et  al. 2018), with recent work showing newfound appli-
cability of wood anatomy for this question (Akhmetzyanov et al. 2019). The lat-
ter questions historically have been addressed by traditional anatomical wood 
identifcation, either feld-level identifcation with a hand lens, a typically coarse
resolution and exclusionary identifcation in the context of a specifc product
claim (e.g., the unknown wood is not consistent with the product claim), or with
fner-scale resolution and typically positive identifcation in the laboratory with a
light microscope, generally to a generic or subgeneric level of specifcity (Gasson
2011). Approaches other than traditional wood anatomy include computer vision
(Khalid et al. 2008; Filho et al. 2014; Rosa da Silva et al. 2017; Ravindran et al. 
2018), molecular methods such as DNA barcoding (Jiao et al. 2018), and wood
extractive-based methods including spectroscopic methods like NIRS (Snel et al.
2018; Ma et al. 2018) or LIBS (Cordeiro et al. 2012), mass spectrometry methods
such as direct analysis in real time (DART) (reviewed in Pavlovich et al. 2018), 
GC–MS (Kite et al. 2010; Zhang et al. 2019), and additional technologies includ-
ing electronic (Cordeiro et al. 2012) and biological (Braun 2013) noses.

There have been calls for integration and application of methods and technolo-
gies to combat illegal logging for a number of years (Dormontt et al. 2015; Lowe 
et al. 2016), but one of the factors limiting the ability to appropriately combine
technologies or select which approaches are best suited for any specifc applica-
tion is the general lack of intercomparability of data sets. With disparate refer-
ence taxa tested across diferent technologies, direct and objective comparison of
the relative strengths of diferent approaches is not possible.

Not all reference taxa are equal—it is routine to separate Quercus rubra from 
Quercus alba, but separating Swietenia macrophylla from Swietenia mahagoni 
was until recently (He et  al. 2019) considered impossible by wood anatomy. 
Likewise with DNA barcoding, plants often fail to be separated at the species
level using “standard” plant DNA barcodes (Kress 2017), necessitating the 
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development of additional barcodes (Jiao et  al. 2019). It should similarly be
expected that biological variability and broad biological characteristics of difer-
ent woods will inform the resolving power of other forensic technologies, includ-
ing determination of geographic origin by stable isotope analysis, and botanical
identifcation by extractive chemistry. No technique, regardless of its technical
resolution, can validly discover or capitalize on biological variability that does 
not exist in the reference data set. A necessary frst step in comparing forensic 
wood identifcation technologies is to evaluate them on the same species using
the same metrics, with identifcation accuracy being the one easily comparable 
across technologies.

In order to provide an example of Malus-to-Malus evaluation of two wood identi-
fcation technologies, a species-level XyloTron computer vision wood identifcation 
model was developed for the same set of ten species studied in a recent DART mass 
spectrometry paper (Deklerck et  al. 2019). Results of the XyloTron model, based 
on specimens from xylaria, are presented side-by-side with those of Deklerck et al. 
(2019) evaluated at the species and the genus level. Comparison in this way allows 
objective evaluation of the accuracy of each technology at the two diferent taxo-
nomic scales, which can inform practical, context-dependent deployment strategies. 

Materials and methods 

Dataset 

The transverse surfaces of 193 wood specimens for 10 species (the same species as 
in Deklerck et al. 2019) from the family Meliaceae were prepared for macroscopic 
imaging. Using a customized implementation of the open-source XyloTron system, 
at least 5 non-overlapping 2048 × 2048 pixel, 8-bit RGB images, per specimen, of 
the prepared transverse surfaces were obtained using a XyloScope (Hermanson et al. 
2019). Each image represents 6.35 mm × 6.35 mm of tissue, and imaging param-
eters were identical to those in Ravindran et al. (2018). The wood specimens used in 
the dataset are listed in Table 1. 

Model architecture 

The convolutional neural network (CNN, LeCun et al. 1989) used here consisted of 
an ImageNet (Russakovsky et al. 2015) pretrained ResNet34 (He et al. 2016) back-
bone that included all the residual blocks with a customized head. The customized 
head included global average and max pooling layers, whose outputs were concate-
nated and passed through two modules each consisting of batchnorm (Iofe and Sze-
gedy 2015), dropout (Hinton et al. 2012), and fully connected/linear layers (BDL) in 
sequence (Fig. 1). ReLU (Nair and Hinton 2010) and softmax activations were used 
after the linear layers in the two BDL modules (represented as L  and L , respec-r s 

tively, in Fig. 1). This CNN architecture was also used in Ravindran et al. (2019) and
was not optimized for this data set. 
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   Table 1 The 10 Meliaceae species and the xylarium specimens included in the data set. Specimens are 
listed based on their fold membership 

Species Accession identifers Specimen counts 

Entandrophragma angolense Fold 1: F31, M25766, M26523, M9034 16 (18) 
Fold 2: M2516, M25765, S44298 
Fold 3: M37878, M41486, M9033 
Fold 4: M17232, M36818, M9030 
Fold 5: M9032, M9037, M40207 

Entandrophragma candollei Fold 1: M4734, M9022, M9028, S21543 20 (20) 
Fold 2: M25762, M9021, M9026, S23275 
Fold 3: M9025, S20558, S23578, T350 
Fold 4: M16805, M3193, M9024, S48161 
Fold 5: F36, M4725, M14732, M17230 

Entandrophragma cylindricum Fold 1: B17123, F459, M14164, M25763, S48162 25 (20) 
Fold 2: B12209, M14146, M9014, M9015, T233 
Fold 3: F44, M17226, M36764, M9012, M9013 
Fold 4: B12219, M25764, M9016, S17097, S19750 
Fold 5: F6, M9009, M9017, M9019, M9020 

Entandrophragma utile Fold 1: B12207, M2506, M9007, S17114 20 (18) 
Fold 2: B18259, F3, M9003, M9008 
Fold 3: B17124, M2483, M9004, S48164 
Fold 4: M40208, M9005, S11130, S17098 
Fold 5: B17520, T134, M17231, S46761 

Khaya anthotheca Fold 1: M36767, S21549, S23268 14 (20) 
Fold 2: M2515, M9049, M9056 
Fold 3: F100, M37605, M9048 
Fold 4: M16996, M8699, M9055 
Fold 5: M13411, S48166 

Khaya ivorensis Fold 1: F240, M17960, M17963, S50022, S50023 25 (15) 
Fold 2: M8421, M8424, M9040, S50019, S50020 
Fold 3: M8679, M9042, M9051, S16812, T11464 
Fold 4: M17962, M37883, S16817, S33732, S48168 
Fold 5: M8423, M9044, M17964, M17965, S50018 

Lovoa trichilioides Fold 1: F10, M21538, M9088, S4119 19 (20) 
Fold 2: F39, M36802, M40184, S17103 
Fold 3: B17473, M17198, M19344, T533 
Fold 4: F135, M13582, S48169, S48515 
Fold 5: B18269, F86, S27612 

Swietenia humilis Fold 1: M33827, S5359, T29325 13 (12) 
Fold 2: M8678, S4765, S8902 
Fold 3: S10364, S7483, S7484 
Fold 4: M725, S5894 
Fold 5: M11879, S3060 
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Table 1 (continued) 

Species Accession identifers Specimen counts 

Swietenia macrophylla Fold 1: M16402, S16351, S350, S4428, S6631 25 (17) 

Fold 2: M19340, M4039, M8566, S16813, S17118 

Fold 3: S152, S16814, S16815, S5966, S7800 

Fold 4: S2056, S21015, S21092, S21093, T3792 

Fold 5: S141, M16046, S7720, S17117, S21094 
Swietenia mahagoni Fold 1: M19356, M20828, M2671, M7264 16 (15) 

Fold 2: M11039, M3905, M3939 
Fold 3: M19339, M33825, M8676 
Fold 4: M18263, M4780, M8677 
Fold 5: M1203, M2676, M10139 

Entries in the specimen counts column have the format: number of specimens for the XyloTron model 
(number of specimens in Deklerck et al. 2019). The prefxes M, S, F, T, and B in the accession identifers 
column refer to MADw, SJRw, FORIGw, Tw, and BCTw collections, respectively 

51
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Fig. 1 Architecture of the CNN used. The input is a digital image, and the output is a vector of prediction 
probabilities of length 10. P : global average pooling layer, P : global max pooling layer, C: concatena-a m 

tion layer, B: batchnorm layer, D : dropout layer with probability p, L : fully connected layer with ReLU p r 

activation, L : fully connected layer with softmax activation s 

Model training 

A two-stage transfer learning process was used for model training. In the frst stage, 
the ResNet34 backbone was initialized with ImageNet pretrained weights (He et al. 
2016) and the custom head was initialized using He normalization (He et al. 2015).
During this stage, the custom head was trained for 6 epochs, while the ResNet back-
bone was used as a feature extractor with the weights frozen. In the second stage, 
the parameters of the entire network were trained for 8 epochs. The Adam optimizer 
(Kingma and Ba 2014) with simultaneous annealing of the learning rate (between 
˜ and ˜min) and momentum (between ˜ and ˜min) (Smith 2018; Howard et al. max max 

2018) was employed for both stages. Random 512 × 192 pixel patches (obtained by 
4× downsampling of 2048 × 768 pixel patches) were input to the network in mini-
batches of size 16 with a data augmentation strategy that included horizontal and 
vertical refections, random rotations in the range [−5, 5] degrees and cutout (Devries 
and Taylor 2017). It should be reiterated that the training methodology and training 
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hyperparameters are exactly the same as in Ravindran et al. (2019) and that no data 
set specifc hyperparameter tuning was performed. The hyperparameter values are 
summarized in Table 2. PyTorch (Paszke et al. 2019), and scientifc Python pack-
ages (Jones et al. 2014) were used to train the model on a NVIDIA Titan X GPU. 

Notation 

Let f ∈ {1, …F} and s ∈ {1, … S} where F and S are the number of folds and seeds, 
respectively. If C(s,f ) is the confusion matrix for fold f with model initialization seed 
s, the confusion matrix (over the fve folds) for seed s, C(s), was computed as: 

F˜ 
C(s) C(s,f )= . 

f=1 

The corresponding prediction accuracy of the model is computed from the confu-
sion matrix as: 

∑ (s) 

A(s) i Cii 
= .∑ (s)

Ci,j ij 

Some useful statistics are: 

A = ˜°˛˝˜˙˜({A(s)˜s ∈ {1, … S}}), 

A˜ =˜({A
(s)˜s ∈ {1, … S}}) (mean accuracy), 

A° =°({A
(s)˜s ∈ {1, … S}}), (standard deviation in accuracies). 

Experiments 

Fivefold cross-validation (F = 5) was used for model evaluation with specimen-
level splits, i.e., every specimen contributed images to exactly one fold (Table 1). 

Table 2    Listing of training 
hyperparameters. The settings 
are the same as in Ravindran 
et al. (2019), and no data set 
specifc hyperparameter tuning 
was performed 

Hyperparameter Value 

Patch size 512 × 192 (pixels) 
Minibatch size 16
Number of epochs (stage 1) 6 
Number of epochs (stage 2) 8 

−2˜  (stage 1) 2emax 

−5˜  (stage 2) 1emax 

˜
min

 (stages 1, 2) ˜ 
max

∕10 

˜ 0.95
max 

0.85˜
min 
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In addition, the model parameters were initialized from fve diferent seeds
(S = 5), and for each of these initializations, the cross-validation procedure was
repeated. During testing, the model prediction scores on the central 512 × 192 
pixel patch (obtained by 4× downsampling of the central 2048 × 768 pixel patch)
for every image in the test fold were obtained. The prediction for each image was
the label with maximum prediction score on its central patch, and the specimen
prediction was the majority prediction of its images. 

Metrics from Deklerck et al. 

Deklerck et  al. (2019) report results that appear to correspond to the case 
F = 5, S = 1 and provide a confusion matrix corresponding to their best hyper-
parameters for their random forest model (fgure 3 in Deklerck et al. 2019)—this 
confusion matrix was used to compute and report A = A(s). Since S = 1, it pre-
cluded the computation of mean accuracy (and the standard deviation) (Table 3). 

Results and discussion 

Results 

At the species level, the accuracy of the XyloTron model (averaged over the 5
seeds, i.e., A˜ ± A°) was 81.9 ± 0.8%. The accuracy of the model from the best 
seed was 82.4%. In order to take the most conservative approach possible, Fig. 2 
presents the species-level confusion matrix from the worst performing seed,
which shows that most errors are still within the correct genus. Genus-level pre-
dictions were derived from the species-level predictions, where out-of-species-
but-within-genus predictions were considered correct whereas out-of-genus pre-
dictions were considered incorrect. The genus-level accuracy of the XyloTron
model was 96.1 ± 0.8%. The corresponding species- and genus-level accuracies 
calculated from fgure 3 in Deklerck et al. (2019) were 74.9% and 91.4%, respec-
tively. In Fig. 3, the genus-level confusion matrices for the XyloTron model and
the DART model of Deklerck et al. (2019) are shown for side-by-side comparison. 

Table 3    Prediction accuracies 
computed from the confusion 
matrices: XyloTron and DART 
from Deklerck et al. (2019) 

 
 

Species-level accuracy 

XyloTron (%) 

81.9 ± 0.8 

DART Deklerck 
et al. (2019) (%) 

74.9∗ 

Genus-level accuracy 96.1 ± 0.8 91.4 

*Additionally, Deklerck et al. (2019) report an accuracy of 82.2% for 
their best model 
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Fig. 2 Species-level confusion matrix for the worst performing seed. Cell colors are coded by accuracy 
proportions. Cells with nonzero specimen counts are annotated. The species-level accuracy computed 
from this confusion matrix is 80.3% 

Fig. 3 Genus-level confusion matrices. Left: confusion matrix (worst performing seed) of the XyloTron 
model. Right: confusion matrix of Deklerck et al. (2019). Cells with nonzero proportions are annotated. 
Prediction accuracies are displayed as proportions because the number of specimens used for the two 
methods is not the same (Table 1) 
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Discussion 

To the authors’ best knowledge, this is the frst work making side-by-side com-
parison of disparate—and putatively complementary—forensic wood identifca-
tion techniques, computer vision and mass spectrometry. The XyloTron computer 
vision wood identifcation models performed at the same (species-level) or higher 
(genus-level) accuracy as DART mass spectrometry for the 10 Meliaceae woods 
studied. The species-level accuracy of the average of the XyloTron models over fve 
folds and seeds (81.9%) is comparable with the best accuracy of 82.2% reported by 
Deklerck et al. (2019) and is higher than the species-level accuracy of 74.9% com-
puted from their confusion matrix. The genus-level accuracy of the XyloTron model 
is 4.7 percentage points higher than the DART genus-level accuracy calculated from 
their confusion matrix. These are the frst known results demonstrating comparable 
or better accuracy metrics for computer vision compared with DART data for wood 
discrimination. 

It can be argued that the most relevant way to compare methods would be to test 
them on the same specimens, rather than merely the same species. Logistical chal-
lenges notwithstanding, there is merit to this argument. A given set of reference 
specimens could potentially exhibit low variability with one technique and high 
variability with another, but if any method purports to achieve species- or genus-
specifc identifcation, it is implicitly asserting a generalizable method that works 
across “all” instances of the taxon, not merely those in the reference data set. A 
method that correctly identifes only those specimens to which it had already been 
exposed would be of limited practical value.

Neither the results of the XyloTron model nor the results of Deklerck et al. (2019)
give us any direct insight into how these models would perform in the real world. It 
is known that machine learning models perform better on their initial data set than 
on a comparable but new data set (Recht et al. 2019; Ravindran et al. 2019). Because
of this, the next critical phase for model development studies is to demonstrate real-
world applicability and efcacy by feld-testing and ground-truthing. Correlating 
metrics from real-world tests back to in silico performance establishes the founda-
tional scientifc facts about the technology’s performance. For some forensic appli-
cations, the operating context may always be one of species-level identifcation, but 
in other contexts, species-level identifcation may be desirable but not necessary. In 
that case, out-of-genus error may be much more practically signifcant than out-of-
species-but-within-genus error. Which taxonomic scale to emphasize depends more 
on the context of eventual real-world deployment than on the scientifc details of the 
models’ accuracies. 

When a program ofcer is selecting from several forensic wood identifcation 
technology options, they should consider more than just prediction accuracy. They 
must determine where, for what purposes, and at what scale a technology must 
serve, how the technology performs in the feld, how scalable and cost-efective it 
is, the embodied costs of operator training, system calibration, and other logistical 
details (Dormontt et al. 2015; Schmitz et al. 2019). Access to these data is critical 
for making informed deployment decisions, and decision making depends necessar-
ily on the ability to conduct side-by-side comparisons on the same sets of taxa. This 
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work here and that of Deklerck et al. (2019) provide no data addressing these issues, 
but as technologies evolve toward real-world deployment, these non-traditional, 
context-dependent performance metrics will become necessary data for evaluating 
disparate technologies. 

Conclusion 

To validly compare prediction accuracies between diferent technologies, the same 
taxa must be studied. For the case of the 10 Meliaceae woods evaluated here, the 
prediction accuracies of the XyloTron computer vision model equal or exceed those 
of the DART mass spectrometry method. In addition to prediction accuracies, pru-
dent evaluation of wood forensic technologies should consider other factors such as 
needed granularity of discrimination, price point and scalability, necessity of spe-
cialized operator expertise, nature of forensic questions, feld deployability, and real-
world feld performance. 
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