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Abstract. To evaluate the reliability of lumber structures, good models for the strength and stiffness
distributions of visual and machine stress—rated (MSR) grades of lumber are necessary. Verrill and
coworkers established theoretically and empirically that the strength properties of visual and MSR
grades of lumber are not distributed as 2-parameter Weibulls. Instead, strength properties of grades of
lumber must have “pseudo-truncated” distributions. To properly implement the pseudo-truncation
theory (to correctly estimate the MOR and MOE distributions of graded subpopulations), one must
know the MOE and MOR distributions of full (“mill-run”’) lumber populations. Owens and coworkers
investigated the mill-run distributions of MOE and MOR at each of four mills. They found that
univariate mill-run MOE and MOR distributions are well-modeled by skew normal distributions or
mixtures of normal distributions but not so well modeled by normal, lognormal, 2-parameter Weibull, or 3-parameter
Weibull distributions. They noted that it was important to investigate whether these results were stable over time. In
this article, to investigate stability over time, the authors extend the analyses of “summer” data sets performed by
Owens et al to new mill-run “winter” data sets. The results show that normal, lognormal, 2-parameter
Weibull, and 3-parameter Weibull distributions continue to perform relatively poorly, and that skew normal
distributions and mixtures of normal distributions continue to perform relatively well.
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INTRODUCTION

To evaluate the reliability of lumber structures,
good models for the strength and stiffness distri-
butions of visual and machine stress-rated (MSR)
grades of lumber are necessary. Verrill et al (2012,
2013, 2014, 2015, 2020) established theoretically
and empirically that the strength properties of
visual and MSR grades of lumber are not dis-
tributed as 2-parameter Weibulls. Instead, strength
properties of grades of lumber must have
(at least to a first approximation) “pseudo-
truncated” distributions.

“Pseudo-truncation” has a technical meaning. The
concept, at least, of pseudo-truncation was rec-
ognized in an American Society of Civil Engi-
neers (ASCE 1988) prestandard report. Section B3
of that report notes that “an improved strength
distribution can be obtained by ... thinning the
lower tail by sorting on a correlated variable”
(p. 152). For example, if the full (“mill-run”)
bivariate MOE-MOR distribution were a bi-
variate Gaussian (normal)-Weibull, then trun-
cating or “binning” on the basis of MOE values (as
in MSR lumber) would lead to a pseudo-truncated
MOR distribution. That is, because MOE and
MOR are not perfectly correlated, truncating based
on lower and upper MOE limits does not lead to
perfect truncation of the MOR distribution, but it
does lead to an MOR distribution whose tails are
thinned. For the case in which the mill-run joint
MOE-MOR distribution is a bivariate Gaussian—
Weibull, Verrill et al (2012, 2015) derived the
exact form of this “pseudo-truncated” Weibull
distribution (they obtained its probability density
function.) They also showed that it cannot have
tail behavior that matches that of a Weibull
distribution.

To properly implement the pseudo-truncation the-
ory of Verrill et al (2012, 2015), one must know the
true mill-run MOE and MOR distributions. Verrill
et al (2017) and Owens et al (2018, 2019) inves-
tigated the mill-run distributions of MOE and MOR
at each of four mills in northern Mississippi. They
found that univariate mill-run MOE and MOR
distributions are well modeled by skew normal
distributions or mixtures of normal distributions
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but not so well modeled (in general) by normal,
lognormal, 2-parameter Weibull, or 3-parameter
Weibull distributions. Owens et al (2019) noted
that it was important to investigate whether these
results are stable over time. In this article, the
authors extend the Owens et al (2019) analyses
of mill-run “summer” data sets to new mill-run
“winter” data sets to determine if distributional
forms vary over time.

MATERIALS AND METHODS
Sampling

Mill-run samples of eight-foot 2 4 southern
yellow pine (Pinus spp.) lumber were supplied
by four dimension sawmills in northern Mis-
sissippi. Mills 1-4 were characterized as a full-
complement mill (processing logs of all sizes), a
small log mill, a full-complement mill, and a
large log mill, respectively (Table 1).

Each mill provided one “summer” sample and
one “winter” sample for a total of eight samples or
1600 specimens. The purpose of sampling ma-
terial produced in different seasons was not to
draw general conclusions about the distributions
of summer and winter lumber but rather to merely
determine if differences in distributional forms
could be observed at the same mill over time.
Although some variation in mechanical proper-
ties undoubtedly occurs in mill-run lumber from
week to week and even day to day because of
variations in raw materials, it might be reasonable
to assume that large variations are more likely to
occur over a period of months than over a period
of days. If the span of months is approximately 6,
one might also expect influence from seasonal
variables such as log availability and forest tract
access. For these reasons, two samples of sawn
material were obtained from each mill—one in
the summer (June through July production) and one
in the winter (December through January produc-
tion). The sampling of material produced roughly
half a year apart at the same mills seemed an ex-
pedient way to maximize observed differences.

Each sample consisted of 200 pieces of rough
sawn, kiln-dried lumber. A kiln package was
randomly chosen from weekly production, the
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Table 1. Production profiles of each sawmill sampled.
Primary

Typical log size lumber dimensions

Mill 1 Full range (small 2 4 through

(pilot mill) to large) 2 12

Mill 2 Small diameter 2 4

Mill 3 Full range (small 2 4 through
to large) 2 12

Mill 4 Large diameter Wide dimensions

(few 2 4)

top course of lumber was removed, and the next
200 pieces were sampled sequentially. The net
dimensions of each specimen after drying and
planing were 1.5 3.5 96 inches (3.81
8.89  243.84 cm). Each mill-run sampling was
made before grading and included all qualities
that developed—even the lower quality pieces
that would not make grade and might otherwise
be discarded.

Testing

For each specimen, MOR and three measures of
MOE were assessed. Dynamic MOE was mea-
sured by two nondestructive tests. Metriguard’s
E-computer (Model 340, hereafter “E-computer,”
Metriguard, Inc., Pullman, WA www.metriguard.com)
estimated the MOE of each specimen by trans-
verse vibration. The test pieces were supported at
each end. After a slight tap was applied to the
midspan, the frequency of oscillation was mea-
sured by a transducer at one end. The computer
calculated the MOE as per the following formula
(Ross 2015).

211763
E:f WS’
Clg

where E = modulus of elasticity, S = span, W =
weight of specimen, f = resonant frequency, I =
moment of inertia, g = acceleration due to
gravity, and C = constant.

Fiber-gen’s Director HM200 (hereafter ‘“Direc-
tor,” Fiber-gen Limited, Christchurch, New
Zealand, www.fibre-gen.com) estimated MOE by
measuring acoustic velocity. Each specimen was
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laid across two sawhorses. The device’s sensor
was held against one end of the test piece while an
acoustic wave was initiated with a hammer. The
sensor measured the acoustic velocity and cal-
culated the MOE based on the following formula
(Ross 2015):

E=pV?,

where E = modulus of elasticity, p = density of
the specimen, and V = acoustic velocity.

MOR and static MOE were measured by a de-
structive third-point static bending test per ASTM
D198-15 (ASTM 2015) (Figs 1 and 2). Before
testing, the MC of each specimen was measured
by a Wagner L 601-3 handheld moisture meter
(Wagner Electronic Products Inc., Rogue River,
OR, www.wagnermeters.com). The mean MC of
the specimens was 13.3% (SD = 1.70). The span-
to-depth ratio was 17:1. Specimens were oriented
edgewise. Load head placement along the length
of the 59.5-inch (151.13 cm) test span was de-
termined randomly. An extensometer under the
bottom edge of the midspan measured the de-
flection. Force was applied until rupture. The
testing time was approximately 5 min. All MOE
and MOR values were adjusted to a common MC
of 15% per ASTM 1990-16 (ASTM 2016) before
analysis.

There was one broken specimen in the Mill 2
summer sample and one in the Mill 4 winter


http://www.metriguard.com
http://www.fibre-gen.com
http://www.wagnermeters.com
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Figure 2. Third-point loading with a span-to-depth ratio of 17:1.

sample. These pieces could not be tested, so their
records were removed listwise from the dataset
reducing their N to 199 each. Also, there were two
specimens from the Mill 1 winter sample, two
specimens from the Mill 2 winter sample, and one
specimen from the Mill 3 winter sample for which
the Director device was unable to generate a
reading even after multiple attempts. These
missing data points were deleted on a pairwise
basis.

Statistical Methods

Distributions were fit to each of the four data sets
and evaluated for goodness-of-fit. Candidate
distributions were selected based on previous
research. Normal, lognormal, two-parameter
Weibull, and three-parameter Weibull appear
widely in the literature (eg Galligan et al 1986;
Green and Evans 1987; Evans et al 1997; ASTM
2017a, 2017b). Skew normal and mixed normal
distributions showed good fit in previous studies
by the current authors (Verrill et al 2017; Owens
et al 2018; Owens et al 2019). The probability
density functions of the distributions are provided
in the Appendix.

The normal and lognormal fits reported in this
article were performed in the R programming
environment (R Core Team 2018). The maximum
likelihood fits for the other four distributions were
performed via Fortran programs written by the
authors (see http://www]1.fpl.fs.fed.us/4mills.html
for listings of these programs).

The R nortest package (Gross and Ligges 2015)
was used to perform Cramér-von Mises and
Anderson—Darling goodness-of-fit tests for normal
and lognormal distributions. The R EWGoF package
(Krit 2017) was used to perform Cramér—von Mises
and Anderson—Darling goodness-of-fit tests for 2-
parameter Weibull distributions. Because there were
no readily available packages to perform goodness-
of-fit tests for three-parameter Weibull, skew
normal, and mixed normal distributions, the au-
thors wrote Fortran programs that performed
nonparametric bootstraps (a type of simulation)
that yielded Cramér—von Mises p-values for these
three distributions (see http://www1.fpl.fs.fed.us/
4mills.html for listings of these programs). The
specialized Shapiro-Wilk test of normality
(Shapiro and Wilk 1965) often yields greater
statistical power than the more general Cramér—
von Mises and Anderson—Darling goodness-of-fit
tests. Thus, the authors included Shapiro—Wilk
(shapiro.test in R) results for normal and lognor-
mal tests in Tables 2-5.

RESULTS

The results of the goodness-of-fit tests for mills
1-4 by season appear in Tables 2-5, respectively.
Tables 2-5 are further summarized in Table 6.
For each of the four properties (static MOE,
E-computer E, Director E, and MOR), Table 6
presents the number of mills, by season, for
which a distribution was rejected by a goodness-
of-fit test at a 0.05 significance level. This number
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Table 6. Goodness-of-fit test summary score card.

173

2-par Weibull Normal Lognormal 3-par Weibull Mixed normal Skew normal

Property Sum Win Sum Win Sum Win Sum Win Sum Win Sum Win

Static MOE 4 4 3 2 1 3 2 1 0 0 0 0
Summer + winter 8 5 4 3 0 0

E-computer E 4 4 3 3 1 0 2 1 0 0 0 0
Summer + winter 8 6 1 3 0 0

Director E 4 4 4 4 2 1 2 2 1 0 1 0
Summer + winter 8 8 3 4 1 1

MOR 3 2 2 3 3 4 2 1 1 0 0 0
Summer + winter 5 5 7 3 1 0

par, parameter; E-computer E, dynamic MOE as tested with E-computer device; Director E, dynamic MOE as tested with Director HM200 device.

For each of the four properties (static MOE, E-computer E, Director E, and MOR), Table 6 presents the number of data sets (4 mills

2 seasons) for which a

distribution was rejected by a goodness-of-fit test at a 0.05 significance level. For each season, this number can range from 0 to 4. The centered number in bold is the
subtotal of the summer plus the winter samplings for that property (0-8). Low numbers for a distribution suggest that it might be a good model for both stiffness and
strength at multiple mills. Results of Table 6 indicate that skew normal and mixed normal models perform relatively well, and eg the 2-parameter Weibull model does

not.

can range from O to 4 (in cases where multiple
tests were performed, a rejection from one test
was scored as a “full rejection” even if the other
tests failed to reject. This seemed the most con-
servative and appropriate approach for assessing
goodness-of-fit.) The centered number in bold
is the subtotal of the summer plus the winter
samplings for that property. This number can
range from O to 8. Low numbers for a distri-
bution suggest that it might be a good model for
that property across multiple mills and/or sea-
sons. Table 6 indicates that mixed normal and
skew normal models perform relatively well,
and eg the 2-parameter Weibull model does not,
as illustrated in the plots in Fig 3.

Probability plots for 2-parameter Weibull distri-
butions fit to MOR data appear in Fig 3. Histo-
grams and probability plots for all 192 cases
(4mills 2seasons 4 variables 6 distributions)
can be found at https://wwwl.fpl.fs.fed.us/
4mills.plots.html.

DISCUSSION

As discussed in the Introduction section, the strength
and stiffness distributions of visual grades of
lumber and the strength distributions of MSR
grades of lumber are pseudo-truncated versions of
mill-run lumber strength and stiffness distribu-
tions. To estimate these pseudo-truncated distri-
butions, it is necessary to start with the mill-run
distributions.

Verrill et al (2017), Owens et al (2018, 2019), and
the current study have focused on identifying
reasonable models for mill-run strength and
stiffness distributions. In these articles, they
have established empirically that normal, log-
normal, 2-parameter Weibull, and 3-parameter
Weibull distributional forms do not generally
perform as well as skew normal or mixed normal
distributional forms.

It is important to note that even if distributional
forms (eg skew normal and mixture of normals)
are stable across mills and times, distributional
fits (estimated parameter values) might not be.
Anderson et al (2019) established that means and
variances (as opposed to distributional forms)
varied among the eight mill-run data sets dis-
cussed in the current article. This suggests that
even though these data sets might share a dis-
tributional form (such as a skew normal or a
mixed normal), their parametric fits might differ
and thus their corresponding pseudo-truncated
grade distributions and their associated reliabil-
ity properties are likely to differ. The authors are
currently investigating the extent to which dis-
tributional fits differ among the eight data sets.

CONCLUSION

Verrill et al (2017) and Owens et al (2018, 2019)
investigated the mill-run distributions of MOE
and MOR at four mills. They found that uni-
variate mill-run MOE and MOR distributions are


https://www1.fpl.fs.fed.us/4mills.plots.html
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Figure 3. Probability plots for 2-parameter Weibull distributions fit to MOR data. For each plot, X and Y axes are “Ordered
Expected Values” and “Ordered Observed Values,” respectively. p-values are from Cramér—von Mises goodness-of-fit tests.
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well-modeled by skew normal distributions or
mixtures of normal distributions, but not so well-
modeled (in general) by normal, lognormal, 2-
parameter Weibull, or 3-parameter Weibull
distributions.

Owens et al (2019) noted that it was important to
investigate whether these results are stable over
time. In this article, the authors have extended the
analyses of “summer” data sets performed by
Owens et al (2019) to new mill-run “winter” data
sets. They have found that normal, lognormal,
2-parameter Weibull, and 3-parameter Weibull
distributions continue to perform relatively
poorly and that skew normal distributions and
mixtures of normal distributions continue to
perform relatively well.

Of course, it is possible that distributional forms
(eg skew normal and mixture of normal) are
stable across mills and times, whereas fits (esti-
mated parameter values) are not. The authors are
currently investigating the extent to which dis-
tributional fits differ among their eight data sets,
and the corresponding consequences for reli-
ability calculations.
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APPENDIX—PROBABILITY DENSITY FUNCTIONS

NORMAL DISTRIBUTION

The normal probability density function is
given by

1
f(X;H,G): \/ﬁgexp —(X “)2/202

for x € (o0, o), where p is the mean and o is the
SD. This distribution is denoted by the notation
N(u, 62).

LOGNORMAL DISTRIBUTION

The lognormal probability density function is
given by
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flx; p,0)=

8-
a

Qlr—
= | =

exp —(log(x)~ u)*/ 202

for x € (0, ), where 1 is the mean and o is the SD
of the log of the original data.

SKEW NORMAL

The skew normal distribution has probability
density function

2 x &
f(xa§70~)7(x)_ 5 d) T
D « * &
®
for xe( o, %) where ¢ denotes the probability

density function of a standardized normal, ®
denotes the cumulative distribution function of a
standardized normal, and &, ®,and o are the
parameters of the skew normal.

MIXED NORMAL

In this article, a “mixed normal distribution”
refers to a mixture of rwo normal distributions.
Such a mixture results when specimens are drawn
with probability p from an N(u;, o7) distribution
and with probability 1 p from a N(u,, o3) dis-
tribution. In this case, the probability density
function is given by

f(x7 U1,01,p, “2762>

11 2/ 2
= — — eXx X 26
\/2_7551 ( ”1) 1

1 1

+(1 p)x ——= —

for x € (o0, o).

TWO-PARAMETER WEIBULL

The two-parameter Weibull has probability
density function
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Fwsv.B) = yPpwP 'exp —(yw)’ fwsy,B,0)= ¥*pw o !

. p
for we|0, ), where p is the shape parameter and exp —(y(w ¢))
vy is the inverse of the scale parameter.

THREE-PARAMETER WEIBULL . .
for we|c, %), where p is the shape parameter, vy is

The three-parameter Weibull has probability the inverse of the scale parameter, and c is the
density function location parameter.
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