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Abstract. To evaluate the reliability of lumber structures, good models for the strength and stiffness 
distributions of visual and machine stress–rated (MSR) grades of lumber are necessary. Verrill and 
coworkers established theoretically and empirically that the strength properties of visual and MSR 
grades of lumber are not distributed as 2-parameter Weibulls. Instead, strength properties of grades of 
lumber must have “pseudo-truncated” distributions. To properly implement the pseudo-truncation 
theory (to correctly estimate the MOR and MOE distributions of graded subpopulations), one must 
know the MOE and MOR distributions of full (“mill-run”) lumber populations. Owens and coworkers 
investigated the mill-run distributions of MOE and MOR at each of four mills. They found that 
univariate mill-run MOE and MOR distributions are well-modeled by skew normal distributions or 
mixtures of normal distributions but not so well modeled by normal, lognormal, 2-parameter Weibull, or 3-parameter 
Weibull distributions. They noted that it was important to investigate whether these results were stable over time. In 
this article, to investigate stability over time, the authors extend the analyses of “summer” data sets performed by 
Owens et al to new mill-run “winter” data sets. The results show that normal, lognormal, 2-parameter 
Weibull, and 3-parameter Weibull distributions continue to perform relatively poorly, and that skew normal 
distributions and mixtures of normal distributions continue to perform relatively well. 
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INTRODUCTION 

To evaluate the reliability of lumber structures, 
good models for the strength and stiffness distri-
butions of visual and machine stress–rated (MSR) 
grades of lumber are necessary. Verrill et al (2012, 
2013, 2014, 2015, 2020) established theoretically 
and empirically that the strength properties of 
visual and MSR grades of lumber are not dis-
tributed as 2-parameter Weibulls. Instead, strength 
properties of grades of lumber must have 
(at least to a  first approximation) “pseudo-
truncated” distributions. 

“Pseudo-truncation” has a technical meaning. The 
concept, at least, of pseudo-truncation was rec-
ognized in an American Society of Civil Engi-
neers (ASCE 1988) prestandard report. Section B3 
of that report notes that “an improved strength 
distribution can be obtained by … thinning the 
lower tail by sorting on a correlated variable” 
(p. 152). For example, if the full (“mill-run”) 
bivariate MOE-MOR distribution were a bi-
variate Gaussian (normal)–Weibull, then trun-
cating or “binning” on the basis of MOE values (as 
in MSR lumber) would lead to a pseudo-truncated 
MOR distribution. That is, because MOE and 
MOR are not perfectly correlated, truncating based 
on lower and upper MOE limits does not lead to 
perfect truncation of the MOR distribution, but it 
does lead to an MOR distribution whose tails are 
thinned. For the case in which the mill-run joint 
MOE-MOR distribution is a bivariate Gaussian– 
Weibull, Verrill et al (2012, 2015) derived the 
exact form of this “pseudo-truncated” Weibull 
distribution (they obtained its probability density 
function.) They also showed that it cannot have 
tail behavior that matches that of a Weibull 
distribution. 

To properly implement the pseudo-truncation the-
ory of Verrill et al (2012, 2015), one must know the 
true mill-run MOE and MOR distributions. Verrill 
et al (2017) and Owens et al (2018, 2019) inves-
tigated the mill-run distributions of MOE and MOR 
at each of four mills in northern Mississippi. They 
found that univariate mill-run MOE and MOR 
distributions are well modeled by skew normal 
distributions or mixtures of normal distributions 

but not so well modeled (in general) by normal, 
lognormal, 2-parameter Weibull, or 3-parameter 
Weibull distributions. Owens et al (2019) noted 
that it was important to investigate whether these 
results are stable over time. In this article, the 
authors extend the Owens et al (2019) analyses 
of mill-run “summer” data sets to new mill-run 
“winter” data sets to determine if distributional 
forms vary over time. 

MATERIALS AND METHODS 

Sampling 

Mill-run samples of eight-foot 2 4 southern 
yellow pine (Pinus spp.) lumber were supplied 
by four dimension sawmills in northern Mis-
sissippi. Mills 1-4 were characterized as a full-
complement mill (processing logs of all sizes), a 
small log mill, a full-complement mill, and a 
large log mill, respectively (Table 1). 

Each mill provided one “summer” sample and 
one “winter” sample for a total of eight samples or 
1600 specimens. The purpose of sampling ma-
terial produced in different seasons was not to 
draw general conclusions about the distributions 
of summer and winter lumber but rather to merely 
determine if differences in distributional forms 
could be observed at the same mill over time. 
Although some variation in mechanical proper-
ties undoubtedly occurs in mill-run lumber from 
week to week and even day to day because of 
variations in raw materials, it might be reasonable 
to assume that large variations are more likely to 
occur over a period of months than over a period 
of days. If the span of months is approximately 6, 
one might also expect influence from seasonal 
variables such as log availability and forest tract 
access. For these reasons, two samples of sawn 
material were obtained from each mill—one in 
the summer (June through July production) and one 
in the winter (December through January produc-
tion). The sampling of material produced roughly 
half a year apart at the same mills seemed an ex-
pedient way to maximize observed differences. 

Each sample consisted of 200 pieces of rough 
sawn, kiln-dried lumber. A kiln package was 
randomly chosen from weekly production, the 
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Table 1. Production profiles of each sawmill sampled. 

Primary 
Typical log size lumber dimensions 

Mill 1 Full range (small 2 4 through 
(pilot mill) to large) 2 12 

Mill 2 Small diameter 2 4 
Mill 3 Full range (small 2 4 through 

to large) 2 12 
Mill 4 Large diameter Wide dimensions 

(few 2 4) 

top course of lumber was removed, and the next 
200 pieces were sampled sequentially. The net 
dimensions of each specimen after drying and 
planing were 1.5 3.5 96 inches (3.81 
8.89 243.84 cm). Each mill-run sampling was 
made before grading and included all qualities 
that developed—even the lower quality pieces 
that would not make grade and might otherwise 
be discarded. 

Testing 

For each specimen, MOR and three measures of 
MOE were assessed. Dynamic MOE was mea-
sured by two nondestructive tests. Metriguard’s 
E-computer (Model 340, hereafter “E-computer,” 
Metriguard, Inc., Pullman, WA www.metriguard.com) 
estimated the MOE of each specimen by trans-
verse vibration. The test pieces were supported at 
each end. After a slight tap was applied to the 
midspan, the frequency of oscillation was mea-
sured by a transducer at one end. The computer 
calculated the MOE as per the following formula 
(Ross 2015). 

f 2WS3 

E ¼ ;
CIg 

where E ¼ modulus of elasticity, S ¼ span, W ¼ 
weight of specimen, f ¼ resonant frequency, I ¼ 
moment of inertia, g ¼ acceleration due to 
gravity, and C ¼ constant. 

Fiber-gen’s Director HM200 (hereafter “Direc-
tor,” Fiber-gen Limited, Christchurch, New 
Zealand, www.fibre-gen.com) estimated MOE by 
measuring acoustic velocity. Each specimen was 

Figure 1. Static bending test setup as per ASTM D198-15. 

laid across two sawhorses. The device’s sensor 
was held against one end of the test piece while an 
acoustic wave was initiated with a hammer. The 
sensor measured the acoustic velocity and cal-
culated the MOE based on the following formula 
(Ross 2015): 

E ¼ ρV2; 

where E ¼ modulus of elasticity, ρ ¼ density of 
the specimen, and V ¼ acoustic velocity. 

MOR and static MOE were measured by a de-
structive third-point static bending test per ASTM 
D198-15 (ASTM 2015) (Figs 1 and 2). Before 
testing, the MC of each specimen was measured 
by a Wagner L 601-3 handheld moisture meter 
(Wagner Electronic Products Inc., Rogue River, 
OR, www.wagnermeters.com). The mean MC of 
the specimens was 13.3% (SD ¼ 1.70). The span-
to-depth ratio was 17:1. Specimens were oriented 
edgewise. Load head placement along the length 
of the 59.5-inch (151.13 cm) test span was de-
termined randomly. An extensometer under the 
bottom edge of the midspan measured the de-
flection. Force was applied until rupture. The 
testing time was approximately 5 min. All MOE 
and MOR values were adjusted to a common MC 
of 15% per ASTM 1990-16 (ASTM 2016) before 
analysis. 

There was one broken specimen in the Mill 2 
summer sample and one in the Mill 4 winter 

http://www.metriguard.com
http://www.fibre-gen.com
http://www.wagnermeters.com
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Figure 2. Third-point loading with a span-to-depth ratio of 17:1. 

sample. These pieces could not be tested, so their 
records were removed listwise from the dataset 
reducing their N to 199 each. Also, there were two 
specimens from the Mill 1 winter sample, two 
specimens from the Mill 2 winter sample, and one 
specimen from the Mill 3 winter sample for which 
the Director device was unable to generate a 
reading even after multiple attempts. These 
missing data points were deleted on a pairwise 
basis. 

Statistical Methods 

Distributions were fit to each of the four data sets 
and evaluated for goodness-of-fit. Candidate 
distributions were selected based on previous 
research. Normal, lognormal, two-parameter 
Weibull, and three-parameter Weibull appear 
widely in the literature (eg Galligan et al 1986; 
Green and Evans 1987; Evans et al 1997; ASTM 
2017a, 2017b). Skew normal and mixed normal 
distributions showed good fit in previous studies 
by the current authors (Verrill et al 2017; Owens 
et al 2018; Owens et al 2019). The probability 
density functions of the distributions are provided 
in the Appendix. 

The normal and lognormal fits reported in this 
article were performed in the R programming 
environment (R Core Team 2018). The maximum 
likelihood fits for the other four distributions were 
performed via Fortran programs written by the 
authors (see http://www1.fpl.fs.fed.us/4mills.html 
for listings of these programs). 

The R nortest package (Gross and Ligges 2015) 
was used to perform Cramer´ –von Mises and 
Anderson–Darling goodness-of-fit tests for normal 
and lognormal distributions. The R EWGoF package 
(Krit 2017) was used to perform Cramer´ –von Mises 
and Anderson–Darling goodness-of-fit tests  for 2-
parameter Weibull distributions. Because there were 
no readily available packages to perform goodness-
of-fit tests for three-parameter Weibull, skew 
normal, and mixed normal distributions, the au-
thors wrote Fortran programs that performed 
nonparametric bootstraps (a type of simulation) 
that yielded Cramer´ –von Mises p-values for these 
three distributions (see http://www1.fpl.fs.fed.us/ 
4mills.html for listings of these programs). The 
specialized Shapiro–Wilk test of normality 
(Shapiro and Wilk 1965) often yields greater 
statistical power than the more general Cramer´ – 
von Mises and Anderson–Darling goodness-of-fit 
tests. Thus, the authors included Shapiro–Wilk 
(shapiro.test in R) results for normal and lognor-
mal tests in Tables 2-5. 

RESULTS 

The results of the goodness-of-fit tests for mills 
1-4 by season appear in Tables 2-5, respectively. 
Tables 2-5 are further summarized in Table 6. 
For each of the four properties (static MOE, 
E-computer E, Director E, and MOR), Table 6 
presents the number of mills, by season, for 
which a distribution was rejected by a goodness-
of-fit test at a 0.05 significance level. This number 

http://www1.fpl.fs.fed.us/4mills.html
http://www1.fpl.fs.fed.us/4mills.html
http://www1.fpl.fs.fed.us/4mills.html
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2-par Weibull Normal Lognormal 3-par Weibull Mixed normal Skew normal 

Property Sum Win Sum Win Sum Win Sum Win Sum Win Sum Win 

Static MOE 4 4 3 2 1 3 2 1 0 0 0 0 
Summer þ winter 
E-computer E 4 

8 
4 3 

5 
3 1 

4 
0 2 

3 
1 0 

0 
0 0 

0 
0 

Summer þ winter 
Director E 4 

8 
4 4 

6 
4 2 

1 
1 2 

3 
2 1 

0 
0 1 

0 
0 

Summer þ winter 
MOR  3  

8 
2 2 

8 
3 3 

3 
4 2 

4 
1 1 

1 
0 0 

1 
0 

Summer  winter 5 5 7 3 1 0 þ
par, parameter; E-computer E, dynamic MOE as tested with E-computer device; Director E, dynamic MOE as tested with Director HM200 device. 
For each of the four properties (static MOE, E-computer E, Director E, and MOR), Table 6 presents the number of data sets (4 mills 2 seasons) for which a 

distribution was rejected by a goodness-of-fit test at a 0.05 significance level. For each season, this number can range from 0 to 4. The centered number in bold is the 
subtotal of the summer plus the winter samplings for that property (0-8). Low numbers for a distribution suggest that it might be a good model for both stiffness and 
strength at multiple mills. Results of Table 6 indicate that skew normal and mixed normal models perform relatively well, and eg the 2-parameter Weibull model does 
not. 
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Table 6. Goodness-of-fit test summary score card. 

can range from 0 to 4 (in cases where multiple 
tests were performed, a rejection from one test 
was scored as a “full rejection” even if the other 
tests failed to reject. This seemed the most con-
servative and appropriate approach for assessing 
goodness-of-fit.) The centered number in bold 
is the subtotal of the summer plus the winter 
samplings for that property. This number can 
range from 0 to 8. Low numbers for a distri-
bution suggest that it might be a good model for 
that property across multiple mills and/or sea-
sons. Table 6 indicates that mixed normal and 
skew normal models perform relatively well, 
and eg the 2-parameter Weibull model does not, 
as illustrated in the plots in Fig 3. 

Probability plots for 2-parameter Weibull distri-
butions fit to MOR data appear in Fig 3. Histo-
grams and probability plots for all 192 cases 
(4 mills 2 seasons 4 variables 6 distributions) 
can be found at https://www1.fpl.fs.fed.us/ 
4mills.plots.html. 

DISCUSSION 

As discussed in the Introduction section, the strength 
and stiffness distributions of visual grades of 
lumber and the strength distributions of MSR 
grades of lumber are pseudo-truncated versions of 
mill-run lumber strength and stiffness distribu-
tions. To estimate these pseudo-truncated distri-
butions, it is necessary to start with the mill-run 
distributions. 

Verrill et al (2017), Owens et al (2018, 2019), and 
the current study have focused on identifying 
reasonable models for mill-run strength and 
stiffness distributions. In these articles, they 
have established empirically that normal, log-
normal, 2-parameter Weibull, and 3-parameter 
Weibull distributional forms do not generally 
perform as well as skew normal or mixed normal 
distributional forms. 

It is important to note that even if distributional 
forms (eg skew normal and mixture of normals) 
are stable across mills and times, distributional 
fits (estimated parameter values) might not be. 
Anderson et al (2019) established that means and 
variances (as opposed to distributional forms) 
varied among the eight mill-run data sets dis-
cussed in the current article. This suggests that 
even though these data sets might share a dis-
tributional form (such as a skew normal or a 
mixed normal), their parametric fits might differ 
and thus their corresponding pseudo-truncated 
grade distributions and their associated reliabil-
ity properties are likely to differ. The authors are 
currently investigating the extent to which dis-
tributional fits differ among the eight data sets. 

CONCLUSION 

Verrill et al (2017) and Owens et al (2018, 2019) 
investigated the mill-run distributions of MOE 
and MOR at four mills. They found that uni-
variate mill-run MOE and MOR distributions are 

https://www1.fpl.fs.fed.us/4mills.plots.html
https://www1.fpl.fs.fed.us/4mills.plots.html
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Figure 3. Probability plots for 2-parameter Weibull distributions fit to MOR data. For each plot, X and Y axes are “Ordered 
Expected Values” and “Ordered Observed Values,” respectively. p-values are from Cramer´ –von Mises goodness-of-fit tests. 
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well-modeled by skew normal distributions or 
mixtures of normal distributions, but not so well-
modeled (in general) by normal, lognormal, 2-
parameter Weibull, or 3-parameter Weibull 
distributions. 

Owens et al (2019) noted that it was important to 
investigate whether these results are stable over 
time. In this article, the authors have extended the 
analyses of “summer” data sets performed by 
Owens et al (2019) to new mill-run “winter” data 
sets. They have found that normal, lognormal, 
2-parameter Weibull, and 3-parameter Weibull 
distributions continue to perform relatively 
poorly and that skew normal distributions and 
mixtures of normal distributions continue to 
perform relatively well. 

Of course, it is possible that distributional forms 
(eg skew normal and mixture of normal) are 
stable across mills and times, whereas fits (esti-
mated parameter values) are not. The authors are 
currently investigating the extent to which dis-
tributional fits differ among their eight data sets, 
and the corresponding consequences for reli-
ability calculations. 
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APPENDIX—PROBABILITY DENSITY FUNCTIONS 

NORMAL DISTRIBUTION 

The normal probability density function is 
given by 

1 1 
f ðx; µ ; σÞ¼  p  exp

�
 �ð x � µ Þ 2

.
2σ2 
�ffiffiffiffi

2π
ffi
σ 

for x 2 (� ‘, ‘), where µ is the mean and σ is the 
SD. This distribution is denoted by the notation 
N(µ, σ2). 

LOGNORMAL DISTRIBUTION 

The lognormal probability density function is 
given by 

1 1 1
f ðx; µ ; σÞ¼  p  

x

exp

ffiffiffiffi
2π σ  

 �
 

ffi
�ð logðxÞ� µ Þ2

.�
2σ2 
��

for x 2 (0, ‘), where µ is the mean and σ is the SD 
of the log of the original data. 

SKEW NORMAL 

The skew normal distribution has probability 
density function 

2 
 
x 

; ξ; ω;   f
� ξ

f ðx Þ¼
ω

�
ω 

�
  

x � ξ�Φ   
ω 

��

for x  ‘; ‘  where f denotes the probability 
density

2ð
 
�
function

Þ
 of a standardized normal, Φ 

denotes the cumulative distribution function of a 
standardized normal, and ξ; ω; and   are the 
parameters of the skew normal. 

MIXED NORMAL 

In this article, a “mixed normal distribution” 
refers to a mixture of two normal distributions. 
Such a mixture results when specimens are drawn 
with probability p from an N(µ , σ21 1) distribution 
and with probability 1� p from a N(µ2, σ22) dis-
tribution. In this case, the probability density 
function is given by 

f ðx; µ 1; σ1; p; µ 2; σ2Þ 
1 1 ¼ p �p  exp

�
 �ð x 2

σ
� µ Þ2 2 

2π

.�
σffiffiffiffiffi 1 1 

1

��

1 1 þð1 � pÞ� p  

exp 
�

� µ

ffiffiffiffi
2π σ2  

�ð x 2 2
2

ffi
Þ 
.�

2σ2 

��

for x 2 ( �‘, ‘). 

TWO-PARAMETER WEIBULL 

The two-parameter Weibull has probability 
density function 
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f ðw ; βÞ¼  γβ; γ βw β � 1 exp
�
 �ð γwÞ β

�

for w2½0; ‘Þ; where β is the shape parameter and 
γ is the inverse of the scale parameter. 

THREE-PARAMETER WEIBULL 

The three-parameter Weibull has probability 
density function 

f ðw; γ; β; cÞ¼  γββðw� cÞβ  � 1

exp
�
 �ð γðw� cÞÞβ 

�

for w2½c; ‘ ; where β is the shape parameter, γ is 
the inverse 

Þ
of the scale parameter, and c is the 

location parameter. 
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