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Abstract

Life cycle assessment (LCA) has been used to understand the carbon and energy implications of
manufacturing and using cross-laminated timber (CLT), an emerging and sustainable alternative
to concrete and steel. However, previous LCAs of CLT are static analyses without considering the
complex interactions between the CLT manufacturing and forest systems, which are dynamic and
largely affected by the variations in forest management, CLT manufacturing, and end-of-life
options. This study fills this gap by developing a dynamic life-cycle modeling framework for a
cradle-to-grave CLT manufacturing system across 100 years in the Southeastern United States. The
framework integrates process-based simulations of CLT manufacturing and forest growth as well as
Monte Carlo simulation to address uncertainty. On a 1-ha forest land basis, the net greenhouse gas
(GHG) emissions range from —954 to —1445 metric tonne CO; eq. for a high forest productivity
scenario compared to —609 to —919 metric tonne CO; eq. for a low forest productivity scenario.

All scenarios showed significant GHG emissions from forest residues decay, demonstrating the
strong needs to consider forest management and their dynamic impacts in LCAs of CLT or other
durable wood products (DWP). The results show that using mill residues for energy recovery has
lower fossil-based GHG (59%—61% reduction) than selling residues for producing DWP, but
increases the net GHG emissions due to the instantaneous release of biogenic carbon in residues. In
addition, the results were converted to a 1 m? basis with a cradle-to-gate system boundary to be
compared with literature. The results, 113-375 kg CO, eq. m ™ across all scenarios for fossil-based
GHG emissions, were consistent with previous studies. Those findings highlight the needs of
system-level management to maximize the potential benefits of CLT. This work is an attributional
LCA, but the presented results lay a foundation for future consequential LCAs for specific CLT
buildings or commercial forest management systems.

1. Introduction

The construction industry is a major source of global
greenhouse gas (GHG) emissions and energy con-
sumption [1]. According to the International Energy
Agency, in 2018, the global construction industry
accounted for 6% (25 EJ) of total energy consumption
and 11% (3.8 Gt CO,) of total energy- and process-
related CO, emissions [1]. As the global population
increases, the environmental footprints of the con-
struction industry are expected to continue grow-
ing [1, 2]. In North America, the structural systems

© 2020 The Author(s). Published by IOP Publishing Ltd

in mid-rise (typically 5-15 stories) and commercial
buildings largely depend on carbon-intensive materi-
als such as reinforced concrete and steel [2, 3]. Cross-
laminated timber (CLT) is a renewable alternative to
those materials and has attracted increasing attention
for mid-rise buildings [4, 5]. CLT is a prefabricated
mass timber product with several lumber layers (typ-
ically 3, 5, or 7) that are stacked crosswise (typically
90°) to form a solid panel [2, 6, 7]. Many studies
have discussed the advantages of CLT over traditional
reinforced concrete and steel, including superior fire
and thermal performance [8—12], better mechanical


https://doi.org/10.1088/1748-9326/abc5e6
https://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/abc5e6&domain=pdf&date_stamp=2020-12-4
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-9359-2030
mailto:y.yao@yale.edu
http://doi.org.10.1088/1748-9326/abc5e6

10P Publishing

Environ. Res. Lett. 15 (2020) 124036

properties (e.g. bending stiffness, bending strength)
[13—17], better acoustic performance [18-22], lower
density (compared to concrete or steel) [21-23], and
rapid installation [14, 19, 24].

Previous studies discussed the benefits of CLT
in carbon storage and emission mitigation in
[23,25-28]. Several studies have applied life cycle
assessment (LCA) to CLT products [19, 29, 30] and
CLT buildings [2, 23, 25, 27, 31] (see supplement-
ary materials (SM) section 1 (available online at
stacks.iop.org/ERL/15/124036/mmedia) for literat-
ure details) to quantify the environmental benefits of
CLT. LCA is a widely accepted tool to quantify the
environmental performance of a product’s life cycle
[32-36]. However, most previous LCA studies on CLT
have not considered the variations in forest growth
and management, wood materials (e.g. moisture con-
tent, carbon content), lumber production (e.g. lum-
ber recovery rate, energy recovery choices), trans-
portation distance, CLT production (e.g. resin usage,
cutting loss), and CLT recycling. Such variations may
have large impacts on the environmental footprints of
CLT. Understanding the impacts of those variations
can help system-level management to maximize the
potential benefits of CLT.

The system boundary of most LCA studies on CLT
is cradle-to-gate [19, 29, 30], excluding the end-of-
life options and waste generated from manufacturing
CLT. The end-of-life options (e.g. recycling or land-
fill) could have direct impacts on the carbon foot-
prints of CLT [37]. Additionally, most LCA studies for
CLT assumed static carbon emissions, sequestration
(for the forest), and storage (for CLT and other dur-
able wood products (DWP)) [19, 29, 30]. The LCA
studies on other biomass-based products have shown
the substantial impacts of dynamic carbon flows on
the timing of emissions, carbon footprints and cli-
mate implications [38, 39]. Tracking how carbon is
sequestrated, stored, and emitted from forest to the
CLT’s end of life in a dynamic way could enhance
our understandings of interactions among the forest,
CLT manufacturing, and waste management systems,
and shed light on potential synergetic opportunities
across the industries for GHG mitigations.

This study addressed these challenges by devel-
oping a dynamic life-cycle model for manufactur-
ing CLT from southern yellow pine in the South-
eastern U.S. over 100 years. Southern yellow pine
(e.g. loblolly, shortleaf, longleaf, and slash pine) is
currently grown on about 16 million hectares across
the southern U.S., and an attractive feedstock for
CLT production [11, 40, 41]. This study is an attri-
butional LCA focusing on the carbon and energy
dynamics across the life cycle of CLT panels, includ-
ing forest growth and operations, CLT manufactur-
ing (including lumber production and CLT produc-
tion), use phase, and end-of-life. This study does not
include the use phase of CLT buildings that are sub-
ject to many factors such as architecture design and
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energy management, but the results and data of this
study can support future LCAs focusing on compar-
ing CLT buildings with their counterparts. The life
cycle inventory (LCI) data were collected from literat-
ure and process-based simulations for forest growth,
lumber mills, CLT producer, and end-of-life cases.
Scenario analysis coupled with Monte Carlo simu-
lation was conducted to understand the impacts of
uncertainties and variations associated with each life-
cycle stage of CLT.

2. Methodology

In this work, a cradle-to-grave LCA was performed
following ISO Standard 14040 series [32] to eval-
uate the life-cycle GHG emissions and energy con-
sumption of CLT over 100 years. The functional unit
is 1 ha, equivalent to 10000 m?, of forest land.
The system boundary includes forest growth, lum-
ber production, CLT production and use, and end-
of-life case as shown in figure 1. Given that previous
literature used a different system boundary (cradle-
to-gate) and functional unit (1 m?) [19, 30], this
study conducted extended work to show the cradle-
to-gate results on the 1 m*® CLT basis) for a con-
sistent and fair comparison. Process-based simula-
tions were used to generate the LCI data of each
life-cycle stage. Upstream burdens of producing fuels
and chemicals were included. Biogenic and fossil
carbon were tracked separately on a year-by-year
basis for dynamic carbon analysis. The following sec-
tions briefly discuss each life-cycle stage and major
assumptions.

2.1. Forest management and log production

This stage includes forest growth, three major forest
operations (i.e. site preparation and planting, fer-
tilization, and logging), and the decay of harvest
residues, which comprise the major sources of car-
bon sequestration and GHG emissions. The forest
growth sequesters the carbon from the atmosphere,
while the GHG emissions come from forest oper-
ations and the decay of harvest residues [42]. The
life-cycle GHG emissions from forest operations were
estimated based on the usage of fuels and chemic-
als (e.g. fertilizers, herbicides) of each operation and
their upstream burdens (see table 1 and SM section
2.1). Key parameters with variations and uncertain-
ties are shown in table 2 (details for distribution tests
in SM section 2.3). In this study, the harvest residues
(mainly referring to limbs and tops) decay on the
forest land and slowly release GHG emissions which
were modeled by an exponential decay model (SM
section 2.4) [43, 44].

The emissions from residue decay and logging,
and carbon sequestration largely depend on the
growth rate of the trees. In this study, the FASTLOB
model [78] was used to simulate the stand-level
loblolly pine (Pinus taeda L.) growth and yield.


https://stacks.iop.org/ERL/15/124036/mmedia

10P Publishing

Environ. Res. Lett. 15 (2020) 124036

K Lan et al

Fuel, electricity, natural gas, and other materials [

¥

¥
Log
Transportation

Site Preparation
& Planting

Bark &
Sawdust &

Slabs/chips

Sawing

Energy

genera-
Kiln Drying tion for
kiln

Fertilization
Power
credit
Sawdust &

Shavings

Raw Materials

CLT
Transportation

Lumber
Transportation

Lumber
Cutting.
End Jointing Waste

Onsite
Loss

Onsite
Construction

Use

| CLT Construction

Layering &
Gluing
i ! & Demalition
Pressing Landfill '
|
T

| Wood Product (out of system boundary) |

Planing

Transportation

Cutting ot

; ; Wast
End-cutting [t | Recycling |£—| Landfil |

Planing [Chips
Logs Dry Lumber

[ o | =5

Lumber Production

CLT Production CLT Recycling

| Emissions

Figure 1. The system boundary of this study.

Table 1. Diesel consumption and chemical usage of forest operations.

Unit Value
Diesel consumption in fertilization and herbicide application [45] kgha™'® 7.5
Diesel consumption in planting [45] kgha™! 23.4
Nitrogen fertilizer usage [46] kgNha™! 103.1
Phosphorus fertilizer usage [46] kg P,Os ha™! 12.8
Herbicide usage (glyphosate) [45] kgha™! 1.36

2] ha = 10000 m?

Table 2. Key parameter values and assumed distributions in log production based on literature data.

Unit Mean value Minimum Maximum Assumed distribution
Live tree moisture content % dry 88.5 75 102 Uniform (75 102]
[47, 48]
Stem wet density [49-51] kg m~> 881 833 929 Uniform [833929]
Diesel consumption of site kgha™'* 72.11 43.65 94.59 Uniform [43.65,94.59]
preparation [45, 52-54]
Diesel consumption of kg m ™ log 1.66 0.37 3.57 Normal N(1.40, 0.6%)
logging [45, 52, 53, 55-65]
Carbon content of above- % dry 49.2 45.5 52.0 Normal N(49.2, 2.1%)

ground pine tree [66—77]

21 ha = 10000 m?.

Two growth cases (GCs) were modeled with differ-
ent site indices describing the forest site productiv-
ity as shown in table 3 [79]. The model generated
annual aboveground biomass data (SM section 2.2)
for one rotation (25 years). After 25 years, the trees
were harvested with a clear cut (all standings are
felled), generating saw logs as the main products
and harvest residues. The logs under bark were
transported to mills, which is a common indus-
trial practice [80, 81]. This work does not consider
alternative wood products such as pulpwood, lum-
ber, and pellets, given the focus of this study on
CLT. Those market-driving options for landowners
largely depend on the forest economic and mar-
ket conditions, which is beyond the scope of the
study but could be explored and compared in future

consequential LCA leveraging the results and data
from this work.

The results of the FASTLOB model are shown
in figure 2 for 1-ha accumulative aboveground bio-
mass in two GCs by logs and harvest residues.
GC2 has higher log output (443 metric tonnes) and
more harvest residues (111 metric tonnes) because
of higher site productivity. After each rotation, logs
are transported to lumber mills and residues are
left on the ground. Note that this work is a stand-
level analysis, and the fluctuations of forest carbon
stock over 100 years at a landscape level are not con-
sidered. However, the results presented by this study
can provide useful information for future landscape-
level analysis that considers forest carbon stock
changes.
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Table 3. Assumptions of two growth cases based on representative forest practice [82, 83].
Growth Case  Siteindex Planting density (trees per ha)  Time of applying fertilizer ~ Rotation length ~ Thinning
GCl1 60 1680 Year 10 &16 25 None
GC2 90 1680 Year 10 &16 25 None
600

Growth Case 1
500

Growth Case 2

400

300

200

100

Aboveground Biomass Yield
(wet metric tonne ha)
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Figure 2. The growth and yield of 1-ha forest land per rotation for growth case 1 and 2.

2.2. Lumber production

After log production, logs with bark are transported
to lumber mills with an assumed transportation dis-
tance, 92 km [84]. The main unit operations in lum-
ber mills include sawing, kiln drying, planing, and
energy generation for the dry kiln [81, 84]. The pro-
cess parameters with variations are shown in table 4.
The GHG emissions and primary energy consump-
tion were estimated based on the upstream burdens
and the emission factors of energy and fuels (see tables
S1and S5).

2.2.1. Sawing.

Logs are first debarked, and the mass fraction of barks
produced was assumed to be 9%-13% (see table 4).
Then logs are sawn producing wet lumber and two
byproducts (slabs/chips and wet sawdust). The lum-
ber mass was determined by lumber yield in saw-
ing (see table 4). The wet mass allocation of two
byproducts was 82.1 wt% slabs/chips and 17.9 wt%
wet sawdust [86]. In this study, all the slabs/chips
were assumed to be sold to produce particle boards
or other wood products [103, 104] that were excluded
from the system boundary (see figure 1). Bark and wet
sawdust, along with dry planner shavings and saw-
dust, were used for two alternative energy production
cases (see below).

2.2.2. Kiln drying.

Wet lumber are sent to a kiln at 90 °C-120 °C (dry
bulb temperature) to reach the targeted moisture con-
tent [99, 100]. Drying energy comes from either wood
residues or natural gas. The fuel consumption for
kiln drying was calculated as heat demand divided

4

by the overall energy efficiency for energy generation
and drying (see section 2.2.4 and SM section 3.1 for
details). Table 4 also includes a parameter for lumber
drying shrinkage due to moisture content reduction
(101, 105].

2.2.3. Planing.

Planing processes wood to produce finished lumber
in the required dimension and quality [97]. The pro-
cess generates [106] dry sawdust and dry shaving-
s/chips as byproducts/wastes [84, 97]. The dry saw-
dust was assumed to be 3.3 wt% of the total planing
byproducts and the remainder were shavings/chips
[97]. Then the dried lumber is stacked and ready to
be transported to CLT producers.

2.2.4. Energy generation for kiln.
Either biomass fuels or a fossil fuel like natural gas
can be combusted to generate energy for the dry kiln.
In this study, a lumped parameter was used to cover
the overall energy efficiency of kiln drying and energy
generation, as shown in table 4.

Energy supply has direct impacts on the energy
and GHG emissions of lumber production [97]. This
study explored two energy supply scenarios. This
energy recovery scenario combusted mill residues
(bark, sawdust, and shavings/chips from planing) to
supply energy needed by the dry kiln, which rep-
resents the situation where selling mill residues is
not economically attractive (e.g. high transportation
cost). Excessive residues were allocated to power gen-
eration. The sold-to-market scenario used natural gas
to meet the energy demand of the dry kiln and sold
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Table 4. Key parameters with variations in lumber production.

Unit Mean value Minimum Maximum Assumed
distribution
Diesel consumption of hauling kg m ™ dried lumber 3.6 1.7 5.5 Uniform
materials [49-51] [1.7,5.5]
Gasoline consumption of hauling kg m ™~ dried lumber 0.23 0.03 0.23 Uniform
materials [49-51] [0.03,0.43]
Bark mass fraction [85] % 10.5 9 13 Uniform [9,13]
Lumber yield in sawing [84, 86-96] % 50 36 64 Triangular 36,
50, 64
Electricity consumption of sawing ~ kWh m~ log input 24.4 16.5 32.3 Uniform
(84, 88, 97, 98] [16.5,32.3]
Electricity consumption of kiln kWh m > lumber input  26.9 17.9 35.8 Uniform
drying and kiln heat generation [17.9,35.8]
(84, 86, 88, 97, 99]
Lumber target moisture content % (dry basis) 12.5 6 19 Triangular 6,
[15, 19, 30, 86, 93, 100] 12.5, 19
Overall energy efficiency for energy % 233 16.7 29.8 Uniform
generation and drying [84, 88, 99] [16.7,29.8]
Lumber drying shrinkage [101] % 9.14 4.37 15.96 Triangular 4.37,
9.14, 15.96
Electricity consumption of planing ~ kWh m™? lumber input  18.2 7.7 28.7 Uniform
[84, 86, 88, 97] [7.7,28.7]
Planing byproduct mass percentage % 17.8 13.8 21.8 Uniform
(84, 86, 88, 102] [13.8,21.8]

mill residues to other manufacturers for DWP pro-
duction (e.g. particle boards) [103, 104, 107]. The
energy supplied by different fuels was estimated by
the lower heating value (LHV) as documented in SM
section 3.1. Note that mill residues have other choices
(e.g. pellets, mulch) that highly depend on the eco-
nomic drivers and should be analyzed on a case-by-
case basis.

2.3. CLT production

In CLT production, lumber preparation is the first
step. It includes lumber selection, grouping, re-
cutting, and dust removal [30, 108]. The selected
and grouped lumber is longitudinally end-jointed to
make long continuous lumber [15]. In this study, the
end-jointing type was assumed to be finger-jointing.
Four-side planing is needed for the end-jointed lum-
bers to meet the thickness tolerance requirement for
better bonding results [6, 15]. The lumber layered
and glued is applied for face bonding [24]. Melamine
formaldehyde (MF), a common resin, was assumed
to be used in finger-jointing and face-bonding, and
the MF quantity was collected from literature and
shown in table 5 [15, 19, 29, 30]. To remove any
excess resin and final uneven surfaces, planing or
trimming is needed after pressing. As CLT panels are
highly prefabricated products for fast erection and
minimal onsite finishing, Computerized numerical
control (CNC) is commonly used to cut CLT accord-
ing to customized design [109]. The power consump-
tion of CLT production was collected from literat-
ure and shown in table 5. The diesel consumption of
hauling and conveying materials between unit oper-
ations was assumed 0.85 kg m~ final CLT produced

5

[49-51]. All the wood wastes were sent to landfill and
the emissions by landfill decay were discussed in sec-
tion 2.6. Table 5 shows all process parameters with
variations for the CLT production.

2.4. CLT construction and demolition

The transportation distances between CLT produ-
cers and construction sites were assumed to be 104—
320 km [30]. This study estimated GHG emissions
and energy consumption of construction and demoli-
tion based on the literature (see SM section 4) [23].
The building life span in this study was assumed to
be 60 years [2, 23, 25, 110-112], and the carbon
stored in buildings were included. This work does not
include the energy consumption and GHG emissions
of buildings’ use phase, because they are driven by
man factors such as architecture design and energy
end-uses (e.g. heating and cooling facilities and elec-
tronic appliances) [113, 114] that are not necessarily
related to the construction materials. Such environ-
mental burdens need to be addressed on a case-by-
case basis given large variations across different build-
ing types and designs, user behaviors, energy manage-
ment strategies, and allocation methods [2, 27].

2.5. CLT recycling

Previous studies indicated that CLT can be partially
recycled but the real-world practice is still limited [4,
23, 25]. Due to the lack of data, this study developed
two conceptual cases to explore the impacts of recyc-
ling (assumed 50% recycling rate) compared with
landfilling (0% recycling rate) [4, 23, 25, 115]. The
landfilled CLT panels come from either the building
site (as demolition waste) or a CLT recycling plant
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Table 5. Key parameters with variations and uncertainties in the CLT production.

Unit Mean value Minimum Maximum Assumed distribution
Lumber transportation ~ km 265 91 438 Uniform [91 438]
from lumber mill to CLT
producer [19, 30]
Resin (MF) for finger- kg m > lumber input 6.1 53 6.9 Uniform [5.3,6.9]
jointing and pressing
[15, 19, 29, 30]
Planing shavings per- % m~> CLT input 4.0 3.6 4.5 Uniform [3.6,4.5]
centage [19, 30]
End cutting waste per- % m~> CLT input 12.8 12.2 13.4 Uniform [12.2,13.4]
centage [19, 30]
Total electricity con- kWh m ™ final CLT produced 113.8 98.9 128.7 Uniform [98.9128.7]

sumption of CLT pro-
duction [19, 29, 30]

(as waste from recycling). The transportation dis-
tances were assumed to be the same as that from CLT
producer to construction sites. GHG emissions and
energy consumption of the CLT recycling plant were
assumed to be 50% of the normal producing process
as recycling does not need end-jointing, layering and
gluing, or pressing.

2.6. Wood waste landfill

Landfilled wood wastes emit GHG through decay
over a very long period, affecting the overall carbon
analysis [116]. Unlike the decay on forest land, land-
fill decay emits a large amount of CH, that has a
much higher global warming potential (GWP) char-
acterization factor than CO, (100-year GWP for CH,4
is 28) [117, 118]. In this study, the GHG emissions
from landfill decay were estimated based on the Inter-
governmental Panel on Climate Change (IPCC) First
Order Decay (FOD) method (see SM section 5) [116].

2.7. Scenario analysis

The scenarios, as shown in table 6, were designed to
explore counterfactual alternatives related to forest
growth, energy supply, and end-of-life options of
CLT, three aspects that have large impacts on the car-
bon and energy flows of CLT systems. The impacts of
variations in other process parameters were explored
by Monte Carlo simulation [30]. For each scenario,
Monte Carlo simulation was performed for 500 itera-
tions using the probability density functions of para-
meters as shown in tables 2, 4 and 5.

3. Results and discussion

The results in figure 2 were used to simulate the
dynamic carbon flows for 8 scenarios across 100 years
for 1-ha forest land. Given the similar trends across
all eight scenarios, figure 3 only shows the results of
Scenario 6 (see SM figures S2—S9 for the other scen-
arios). Carbon flows related to CLT and byproducts
are shown separately in figures 3(a) and (b) for
better readability. In figure 3, positive values (solid

6

lines) represent GHG emissions, while negative val-
ues (dashed lines) represent sequestrated CO,. The
shaded area of each line indicates the result ranges
(5th percentile (P5) to 95th percentile (P95)) caused
by uncertainty. The line represents the mean value.
The timeline starts with planting pine at year 0 for
a 25-year rotation. The CO, sequestrated by above-
ground live trees (light blue dashed line in figure 3(a))
returns to zero after logging every 25 years. After har-
vest, logs are transported to the lumber mill, while
forest residues are left on land (gray dashed line in fig-
ure 3(b)) that decays and generates GHG (solid gray
line in figure 3(b)). Then logs are manufactured to be
CLT panels, serving as a carbon storage pool (green
dashed line) one year after the logging and corres-
pondingly emit the GHG due to the CLT manufac-
turing process (solid green line) in figure 3(a). In year
86, 60 years after the manufacturing, the CLT manu-
factured from the first rotation is demolished and the
carbon stored in that CLT consequentially decreases.

The carbon stored in landfill waste is indicated by
the black dashed line in figure 3(b). This carbon stock
slowly releases GHG emissions by landfill decay (solid
black line in figure 3(b)). The end-of-life can be com-
plex given the variety of DWP and their fate (e.g. land-
filled with or without energy recovery, or burned for
energy generation), but these alternatives are outside
the system boundary of this study, and should be ana-
lyzed on a case-by-case basis.

Figure 3 shows that from a 1-ha perspective, GHG
emissions are dominated by CLT manufacturing and
decay from landfill and harvest residues. GHG emis-
sions from forest operations, CLT construction and
demolition, and CLT recycling are minimal (see fig-
ure 3(a)). This trend is consistent across all scenarios.

The comparison of 8 scenarios (see figures S2—
S9) has three conclusions. First, over 100 years,
higher forest productivity leads to the higher volume
of produced CLT and more carbon storage that
increases both downstream emissions and sequest-
ration. For example, the carbon stored in CLT pan-
els in Scenario 6 (GC2, high forest productivity)
is 56% higher than that in Scenario 2 (GC1, low
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Table 6. Scenario analysis.
Forest Growth Cases Mill Residues Utilization CIT Recvdlin
in Log Production Cases in Lumber Production yeng
Case Number  Site Index Mill Residues for Mill Residues Sold to Market Recycling Rate
Energy Recovery
Scenario 1 X 0%
Scenario 2 X 50%
Scenario 3 Gel Low X 0%
Scenario 4 X 50%
Scenario 5 X 0%
Scenario 6 . X 50%
. 2 High
Scenario 7 Ge '8 X 0%
Scenario 8 X 50%
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Lumber Production

(b)

forest productivity), but Scenario 6 has 57% higher
GHG emissions from CLT manufacturing than that
in Scenario 2 (all based on mean value of GHG).
Second, GHG emission differences in CLT manufac-
turing are driven by the mill residue options. For
example, the mean CLT manufacturing GHG emis-
sions in Scenario 6 (energy recovery in figure 3(a)) is
36% higher than Scenario 8 (sold-to-market in figure
S9) in year 100. The mill residue options also affect

carbon sources in CLT manufacturing. In Scenario
6, ~14% of CLT manufacturing GHG emissions are
fossil-based; in Scenario 8, over 99.5% of those are
fossil-based.

Besides CLT manufacturing, the largest and rel-
atively near-term GHG emissions are from forest
residues decay (266 metric tonnes in figure 3(b)),
while a delayed but significant source is from land-
fill decay (151 metric tonnes). These two sources

7
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account for 48% of the total 100-year GHG emissions
and justify the carbon benefits of converting residues
to bioenergy products (e.g. biofuel, pellets, biochar)
[36, 76, 119-125].

Figure 4 shows the life-cycle GHG footprints (all
fossil- and biogenic-based GHG emissions minus the
total CO; sequestrated from the atmosphere) for 1-ha
land over 100 years. The site productivity or growth
rate has the dominant impact, as shown by the signi-
ficant differences between slower growing GC1 scen-
arios (Scenario 1-4) and faster growing GC2 scen-
arios (Scenario 5-8). This observation highlights the
importance of improving forest productivity from a
life-cycle GHG perspective for CLT systems.

Another, and somewhat surprising, observation
is the greater net GHG emissions for the scenarios

using mill residues for energy recovery, compared to
the scenarios selling residues to market. This phe-
nomenon is caused by two factors. First, energy recov-
ery immediately releases carbon that otherwise would
be stored in DWP made from mill residues (e.g. 444
metric tonne CO,; in DWP in Scenario 6 (energy
recovery) versus 769 metric tonnes in Scenario 8
(sold to market)). Second, energy recovery gener-
ates more GHG emissions given the lower LHV of
mill residues than that of natural gas (see SM sec-
tion 3.1). Hence, energy recovery case uses renewable
energy (mill residues) and results in higher net GHG
emissions, while sold-to-market case uses fossil fuel
(natural gas) and sells mill residues to produce wood
products, and results in lower net GHG emissions but
higher fossil-based GHG emissions (see figure 5).
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Finally, figure 4 shows the effects of the ‘end-of-
life’ scenarios (50% recycled/50% landfilled versus
100% landfilled). The recycling rate does not show a
significant impact on the net GHG emissions, which
can be explained by the relatively modest amount
of CLT that reached the end of life within the 100-
year timeframe, and the relatively slow decay in
the landfill. See SM section 7 for primary energy
results.

Previous LCA studies used cradle-to-gate system
boundary on 1 m® CLT basis [19, 29, 30], thus the
results of this study were converted to the same sys-
tem boundary and functional unit for a consistent
comparison, as shown in figure 6 Several observa-
tions can be derived. First, the effects of different GCs
are minimal on 1 m> basis (less than 2%) because
forest growth only affects log production. Second,
energy recovery reduces fossil-based GHG emissions
by 47%—48%, due to the reduced use of natural gas
(see SM figure S13 for primary energy results). The
results of previous studies using a cradle-to-gate sys-
tem boundary are 80.0-206.3 kg CO, eq. m~> CLT
[19, 29, 30]. They use carbon neutral assumption and
thus only include fossil-based emissions (details of lit-
erature data are available in SM section 1). Variations
in the results of previous studies are mainly due to dif-
ferences in manufacturing processes, energy supply,
forest characteristics, and transportation. Our results
for the fossil-based GHG emissions (113.1-375.4 by
P5-P95 across all cases) are consistent with the previ-
ous studies.

This work presents dynamic carbon flows of the
integrated forest and CLT systems, which are critical
knowledge to identify effective strategies for maxim-
izing the system-wide carbon benefits of using the
forest for CLT production. Those strategies range
from process design and optimization for CLT manu-
facturing to forest and waste management. Although
this work does not include the use phase of buildings,

9

the presented results and data provide a foundation
for future LCAs or environmental analysis of CLT
buildings. The upstream and downstream burdens
of CLT products estimated in this study allow future
LCA practitioners or architects to explore CLT com-
ing from different forests, manufacturers, and being
treated in different end-of-life scenarios. This is also
the first work that highlights the significance of emis-
sions from forest residues decay and wood waste land-
fills, indicating the importance of including those
emissions and life-cycle stages in the future LCAs for
different wood products.

4. Conclusions

This study developed a dynamic cradle-to-grave
modeling framework and examined the carbon and
energy flows of the CLT life cycle over 100 years.
Varied forest GCs, CLT manufacturing variables, and
CLT recycling cases were investigated to explore their
effects on the carbon and energy flows per 1-ha forest
land basis and 1 m® basis. On a 1-ha basis, higher
forest productivity leads to significantly lower net
life-cycle GHG emissions over 100 years. The largest
GHG emission source is CLT manufacturing, includ-
ing lumber production and CLT production. The
heat source for lumber drying has large impacts on
GHG emissions. Converting lumber mill residues to
DWP reduces the overall 1-ha GHG emissions com-
pared to burning the residues for drying lumber but
largely increases the fossil-based GHG emissions. The
decay of wood wastes (either from forest residues or
a landfill) generates significant GHG emissions over
100 years, highlighting the importance of utilizing
wood wastes in a more valuable and efficient way.
Increasing the CLT recycling rate from 0% to 50%
slightly reduces the 1-ha life-cycle GHG emissions.
This small reduction is due to only one recycling
activity taking place during the 100-year period.
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This study conducts extended research on the
cradle-to-gate GHG emissions and energy consump-
tion of 1 m® CLT produced for a comparison with the
literature. On a 1 m® CLT basis, different GCs have
minor impacts on the results, which contrasts to the
conclusion on a 1-ha basis. Because the two forest
growth cases only affect the results of log production,
but not other life cycle stages. The fossil-based GHG
emissions are largely affected by the options of mill
residues. Specifically, 113.1-236.3 kg CO; eq. m >
(P5-P95) of fossil-based GHG emissions were gen-
erated when using mill residues for energy recovery
and 260.3-375.4 kg CO, eq. m > (P5-P95) were gen-
erated when selling mill residues to produce wood
products.
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