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Social animals are among the most successful organisms on the planet and derive
many benefits from living in groups, including facilitating the evolution of agriculture.
However, living in groups increases the risk of disease transmission in social animals
themselves and the cultivated crops upon which they obligately depend. Social insects
offer an interesting model to compare to human societies, in terms of how insects
manage disease within their societies and with their agricultural symbionts. As living
in large groups can help the spread of beneficial microbes as well as pathogens, we
examine the role of defensive microbial symbionts in protecting the host from pathogens.
We further explore how beneficial microbes may influence other pathogen defenses
including behavioral and immune responses, and how we can use insect systems as
models to inform on issues relating to human health and agriculture.

Keywords: defensive symbiosis, social insects and humans, gut microbiome, colonization resistance, model
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INTRODUCTION

Some of the most successful species on the planet in terms of number of species generated over
time, ability to inhabit diverse ecosystems, and maintenance of high population densities are
social animals (Wilson, 1987). Social lifestyles, however, come at the cost of increased exposure
to pathogens. Both modeling and experimental results indicate that population size and density
correlate with pathogen prevalence and diversity (Anderson and May, 1979, 1982; Altizer et al.,
2003; Schmid-Hempel, 2017). The 10-fold expansion of the human population in the last 200 years
with similar population density increases has caused concerns around the risk of spreading
infectious diseases (Cohen, 2003). Social insects have faced the same challenges successfully,
maintaining high population densities over millions of years and are simple models to gain a better
understanding of how to mitigate pathogen burden and spread (Figure 1).

While social living may enhance pathogen spread, social living also enables the spread of
beneficial microbes (Biedermann and Rohlfs, 2017). For instance, after termites molt, they must
replace their gut symbionts from other nest mates through trophallaxis and coprophagy. This
“social gut” is suggested to contribute to nestmate recognition as well as development, nutrition,
and defense (Breznak and Brune, 1994; Matsuura, 2001; Nakashima et al., 2002; Adams and
Boopathy, 2005). Many microbes benefit the host by providing protection against predators,
parasites, pathogens, or environmental stresses, also known as defensive symbiosis (White and
Torres, 2009). In a mutualistic relationship, the host provides shelter and/or nutrients in exchange
for defense. Understanding interactions between hosts, pathogens, and beneficial microbes can
inform on the potential use of beneficial symbionts in systematically targeting certain pathogens.
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FIGURE 1 | (A) Comparisons of human and insect societies, based on social
grouping sizes (Burchill and Moreau, 2016; Sawe, 2018) and history with
agriculture (Pringle, 1998; Schultz and Brady, 2008). (B) Overview of the
relationship of defensive symbionts with host and pathogens. Specific image
credit from the Noun Project (https://thenounproject.com/): Woman by Lluisa
Iborra, Locust by OCHA Visual, Termite by Heberti Almeida, Ant by Jacob
Eckert, City by sumhi_icon, Beehive by Juraj Sedlák, Barley by Nathan Stang,
and Fungi by CombineDesign. All images used and modified under the
Creative Commons License, Attribution 3.0.

In interactions between social animals, their microbial
defensive symbionts and pathogens, many different selective
pressures may be operating simultaneously. Pathogen pressures
can impact host and symbiont (King and Bonsall, 2017; Engl
et al., 2018). Beneficial symbionts may influence social behavior
to facilitate their horizontal transmission, but core microbiota
may be influenced by diet or other factors (Sherwin et al., 2019).
The evolutionary and ecological dynamics of microbial symbiont
relationships with social animals are not well understood. To
deconvolute these interactions, social insects are interesting
models to compare social and solitary relatives (e.g., bees,
discussed below) or comparing changes in microbiota of species
that alternate between gregarious and solitary lifestages may also
be useful (Lavy et al., 2018).

In this review, we discuss the role of microbial defensive
symbionts in pathogen mitigation within social communities
and their associated agricultural systems. We also consider
how defensive symbiosis intersects with immunological and
behavioral defenses. We compare examples from insects with
defensive symbionts in humans and highlight how insect
models can advance understanding the social impacts of
defensive symbionts.

INSECT DEFENSES AGAINST
PATHOGENS

While defensive symbionts can benefit both social and solitary
animals, social living may better enable sharing defensive
symbionts than solitary lifestyles. For example, eusocial bees
(e.g., Apis mellifera and Bombus spp.), have a consistent core
microbiota that defends against the trypanosome gut parasite
Crithidia bombi, whereas solitary bees do not have a consistent
core community (Koch and Schmid-Hempel, 2011). Several
core microbiome members, including Gilliamella apicola and
Lactobacillus spp., correlate with decreased susceptibility to
C. bombi (Cariveau et al., 2014; Mockler et al., 2018; Näpflin and
Schmid-Hempel, 2018). Additionally, experiments disrupting
the core bee microbiota support the hypothesis that the gut
microbiota plays a role in protecting against opportunistic
pathogens (Raymann et al., 2017) and another common parasite,
Lotmaria passim (Schwarz et al., 2016). Biofilm formation by the
core strains is the suggested protective mechanism against this
pathogen, as indicated by fluorescent in situ hybridization (FISH)
imaging (Martinson et al., 2012) and the enrichment of secretion
systems and surface proteins in bee gut metagenomes (Engel
et al., 2012). As biofilm formation and colonization resistance are
broad defensive mechanisms, it is unclear whether solitary bees
have microbes with similar functionality. Likewise, social bee gut
microbes may confer other functions affecting fitness.

Social animals need to not only protect themselves from
disease, but also their shared food sources. Three lineages of
eusocial or subsocial insects demonstrate agricultural behavior:
ants (Myrmicinae: Attini), termites (Macrotermitinae), and
ambrosia beetles (Xyleborinae and others). All of these insects
live in gregarious communities supporting the hypothesis that
sociality allowed for evolution of insect agriculture (Mueller et al.,
2005). Fungus farming termites cultivate basidiomycete fungi,
Termitomyces spp. as a food source that are either vertically
or horizontally acquired depending on termite species (Johnson
and Hagen, 1981; Korb and Aanen, 2003). Some termites
(Macrotermes natalensis) harbor Bacillus sp. that produce
bacillaene which has antifungal activity and helps protect the
fungal cultivar (Um et al., 2013). Xyleborine ambrosia beetles
cultivate an assemblage of fungi, rather than a single fungal
cultivar, which comprises mycelial fungi, yeasts, and bacteria
(Norris, 1965; Hulcr and Stelinski, 2017). A cycloheximide-
producing Streptomyces phylotype has been isolated from two
species of ambrosia beetles as a possible defensive symbiont
(Grubbs et al., 2019).

In the fungus-growing ants, microbial associations range
from mutualistic to parasitic and are well-described. The
ants grow a fungal cultivar as their primary food source in a
monoculture, which makes it highly susceptible to the specialized
fungal pathogen Escovopsis (Ascomycete; Hypocreales). To
protect their food source, the ants evolved several defense
mechanisms, including a mutualism with Pseudonocardia
spp. (Currie et al., 1999b, 2003). Pseudonocardia produces
antimicrobial molecules that are active against Escovopsis (Currie
et al., 1999b, 2003; Poulsen et al., 2010). Growing Pseudonocardia
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and Escovopsis together reveals patterns of inhibition and
resistance between the two organisms suggesting population and
interaction dynamics at fine phylogenetic scales (Poulsen et al.,
2010; Cafaro et al., 2011). Several of the antibiotics produced by
Pseudonocardia have been characterized (Oh et al., 2009; Carr
et al., 2012; Van Arnam et al., 2016) although the full diversity of
antibiotics used is unknown.

INTERACTIONS OF DEFENSIVE
SYMBIONTS WITH HOST DEFENSES IN
INSECTS

Other methods of pathogen resistance, such as behavior and
immunity, aid in disease resistance and can be influenced by
microbes (Nyholm and Graf, 2012; Lizé et al., 2014; Flórez
et al., 2015). Host and symbionts may adapt to each other
in different ways: symbionts may avoid triggering immune
function (Trappeniers et al., 2019); hosts may diversify immune
pathways (Maire et al., 2019) or hosts may potentially reduce
immune function (International Aphid Genomics Consortium,
2010; Douglas et al., 2011). Further examples of innate
immunity in social insects can be found in the following review
(Otani et al., 2016).

Social insects can coordinate defensive behaviors, some of
which may be triggered or helped by beneficial microbes.
Many of the defensive behaviors in social insects are aimed at
maintaining sanitation of the nest as well as the individuals within
the nest. This phenomenon of collective actions to mitigate
pathogen spread/exposure is known as social immunity, which
is defined as the control or elimination of potential pathogens
by cooperation of individuals through behavioral, physiological,
and/or organizational means (Cremer et al., 2007; Meunier,
2015). For example, subsocial aphid Nipponaphis monzeni
soldiers respond to attacks on their colonies by swarming and
exploding their abdomens. Their abdomens are swollen with
hemocytes and tyrosine that seal and protect the colony. The
endosymbiotic bacterium, Buchnera, regulated by aphid host
genes, helps overproduce tyrosine (Kutsukake et al., 2019). This
example highlights the complex interplay occurring between
host, beneficial symbionts, immune system, and social structure
of an organism. Other examples of social immunity include
grooming, removing waste material and weeding nests and fungal
gardens. Further experimentation using antibiotics or probiotics
could explore the manner in which microbes may influence
behavior and fitness (Alberoni et al., 2018).

Defensive behaviors can also be facilitated by the microbial
production of chemical signals or chemical defenses. Social
insects participate in extensive grooming behaviors categorized
as autogrooming (i.e., self-grooming) and allogrooming (i.e.,
grooming among nestmates), which serve not only to remove
foreign substances from the body surface, but can also provide
lasting antimicrobial defenses (Zhukovskaya et al., 2013). In
terms of using microbes for production of chemical defenses,
many examples in the above defensive symbioses fit this
description (e.g., antimicrobial phenols from locust symbionts,
antibiotics from fungus-farming ant symbionts). Microbes are

also capable of producing chemical signals, such as the intestinal
microbes of subterranean termites (Reticulitermes speratus),
which allow recognition of nestmates from non-nestmate
intruders (Matsuura, 2001). The diversity of interactions
between defensive microbes and host behavior remains an open
area of exploration.

HUMAN DEFENSES AGAINST
PATHOGENS

As in insects, the microbiota provides defense against various
pathogens in humans, but is more complex than insect
microbiomes. While different sites, such as the vagina and nasal
cavity can support symbionts with abilities to produce defensive
compounds (Donia et al., 2014; Zipperer et al., 2016), most of the
potential defensive microbes described reside in the gut. Unlike
many insect gut microbiotas, the human gut microbiota may
contain hundreds of species (Qin et al., 2010). Adding further
complication, whereas in bees and other hosts a core community
is evident, a consistent core community has not been identified in
humans, although a core functionality appears more conserved
than particular strains (Turnbaugh and Gordon, 2009; Human
Microbiome Project Consortium, 2012). Although humans lack
an equivalent solitary lifestyle to insects, evidence suggests that
humans in close social relationships may share a variety of
bacteria with one another and have greater richness and diversity
than humans living alone (Dill-McFarland et al., 2019).

Many different mechanisms for microbial defense exist
and understanding the microbiota’s functions may lead to
improved therapies. For example, fecal microbiota transplants for
treating Clostridium difficile infections that are non-responsive
to antibiotics have cure rates of 90% (Bakken et al., 2011;
Youngster et al., 2016). Several mechanisms have been suggested
including that the microbiota outcompete the pathogen for
nutrients, microbially produced antibiotics target C. difficile,
microbially produced secondary bile acids inhibit C. difficile,
and microbial interactions with the immune system help repair
the gut barrier (Khoruts and Sadowsky, 2016). Human gut
microbes have also been linked to defense against Vibrio
cholerae, where correlations have been found between microbiota
taxa present in the gut and resistance to cholera (Hsiao
et al., 2014; Midani et al., 2018). Likewise, human microbiota
strains compete with Salmonella for nutrients and produce
metabolites that potentially inhibit Salmonella (Antunes et al.,
2014; Bratburd et al., 2018; Zhang et al., 2018). Although
many interactions and correlations have been suggested between
defensive symbiotic bacteria and pathogens in humans, the
challenge remains to explore these symbionts on a society-wide
scale to understand the benefits not only to individuals but to
public health.

Although humans do not have ancient history (on an
evolutionary time scale) with agriculture, many crops used
by humans associate with defensive microbes against certain
pathogens. One example of an agricultural defensive symbiont
is Pseudomonas fluorescens, a bacterium that produces the
antibiotic 2,4-diacetylphloroglucinol, which can inhibit the

Frontiers in Microbiology | www.frontiersin.org 3 February 2020 | Volume 11 | Article 76

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-00076 February 6, 2020 Time: 16:32 # 4

Bratburd et al. Insect and Human Microbial Defenses

causative agent of take-all disease in wheat (Keel et al., 1992).
This bacterium can be found naturally in soils and is a prominent
example of suppressive soils, where soil harbors a community or
certain strains that inhibit plant pathogens, analogous to the idea
of colonization resistance in animals. Beneficial microbes may
provide an environmentally sustainable alternative to chemical
control of pathogens and vectors, but will require maintaining
beneficial microbes in agricultural settings and consideration
of microbial interactions in plant breeding beyond the host’s
pathogen resistance (see the following review for more detail
(Syed Ab Rahman et al., 2018).

INTERACTIONS OF DEFENSIVE
SYMBIONTS WITH HOST DEFENSES IN
HUMANS

The role of the immune system and behaviors is increasingly
recognized as not only defending against harmful microbes, but
also fostering the establishment and maintenance of bacterial
symbionts. We direct the reader to other reviews for further
exploration of the numerous interactions between the microbiota
and the immune system (Belkaid and Harrison, 2017) and
behavior (Vuong et al., 2017; Johnson and Foster, 2018).

Humans have been practicing their own social immunity
with hygienic behaviors throughout history. This includes early
ritualistic behaviors, quarantine and sanitation, and after the rise
of the germ-theory of disease, water treatment, vaccinations, and
vector control (Institute of Medicine (US) Committee for the
Study of the Future of Public Health, 1988; Curtis, 2007). While
humans have taken advantage of antimicrobial compounds from
a variety of sources for hundreds of years (Aminov, 2010;
Harrison et al., 2015), large scale antibiotic discovery, often
microbially derived, took off in the 1900’s and enabled treating
a wide variety of pathogens in people as well as in agriculture
(Aminov, 2010). Unfortunately, broad-spectrum antibiotics can
have lasting impacts on the microbiota affecting the many
interactions discussed above (Jernberg et al., 2007). While efforts
to eliminate pathogens have substantial impacts, most notably
with vaccines eliminating smallpox and reducing other disease
to 99% fewer cases (Orenstein and Ahmed, 2017), practices for
sharing beneficial microbes could also be valuable for medicine
and agriculture. These practices may include fecal microbiota
transplants, probiotic and prebiotic supplementation (George
Kerry et al., 2018; Sonnenburg and Sonnenburg, 2019), creating

built environments that favor beneficial microbes (Kembel et al.,
2012); however, besides perhaps fecal microbiota transplants
for treating C. difficile, these practices currently lack substantial
evidence of efficacy.

WHAT CAN WE LEARN FROM INSECTS?

Insects are useful models to address societal-wide impacts of
defensive symbionts (Table 1). Given the vast complexity in
the human gut, insects can be a simple model to dissect
various mechanisms of microbial defenses since insects tend to
have simplified microbiomes relative to humans. Comparisons
between social and solitary insects (whether in different life
stages as described above with locusts, or among related social
and solitary members as described with bees) can shed light
on what roles, if any, defensive symbionts have played in the
evolution of sociality. Insect colonies are well-defined social
units for replication, tend to have limited within colony genetic
variation, and can be reared in controlled conditions. The insects
themselves often have relatively fast life cycles, which is useful for
examining fitness and intergeneration effects defensive microbes
may have. Social insects also engage in behaviors of interest,
like farming. In the most direct sense, natural products from
insect symbioses may be useful as leads for new antibiotics
themselves (Stow and Beattie, 2008; Ramadhar et al., 2014;
Chevrette et al., 2019) and insects have inherent practical value
as many species are important pollinators or pests; however, we
also want to highlight using insect models to explore the societal
impact of gaining or losing beneficial symbionts. We detailed
many benefits of insect models above, but these models come
with drawbacks. The simplicities of social insect models limit
conclusions relevant for humans to basic ecological dynamics.
Insect models lack many features that mediate host-microbe
interactions in humans, including an adaptive immune system or
complex nervous systems. While much microbiome research has
focused on the impact to the individual host, social insects can
be used to address basic ecological and evolutionary dynamics
including (i) how resilient societies transmit beneficial microbes
to other individuals; and (ii) the larger impact of beneficial
microbes at the population level.

Social insect models can address how social animals maximize
beneficial microbe transmission while minimizing pathogen
spread. Disrupting transmission of beneficial microbes can
render hosts more susceptible to disease (Bohnhoff et al.,
1954; Currie et al., 1999a; Raymann et al., 2017). In some

TABLE 1 | Comparison of social insect and human models for defensive symbiosis.

Advantages of insect models

Control of variables (diet, environment, etc.)

Defined units of replication for social group (e.g., one colony)

Relatively simple microbiomes

Shorter life cycles

Genetic variation within a colony lower than from a general population

Lifestyle variation exists, including solitary, social, and eusocial members

Human alternatives

Diets and environment generally not experimentally manipulated; metadata may
be limited or subject to self-reporting inaccuracies

Units could be family, geographical region, etc.

Complex gut microbiomes, other sites varying complexity

Long life cycles

Variable genetic variation

Different types of social groupings, but all social
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human societies, transmission and maintenance of microbes
has changed dramatically with the introduction of antibiotics,
hygiene practices, and diet changes (Bokulich et al., 2016;
Vangay et al., 2018). Disruptions in microbiota transmission
are hypothesized to have health impacts, including obesity
(Principi and Esposito, 2016). In both social insects and humans
we have limited understanding of how beneficial microbes
are effectively transmitted. In the leaf-cutter ant system, we
know that the defensive symbiont Pseudonocardia is generally
vertically transmitted, acquired during a narrow time window
(Marsh et al., 2014) and may use certain host structures
(Li et al., 2018), but we do not know what limits bacterial
acquisition to certain strains and microbial adaptations to the
host. Analogously in humans, we know microbial acquisition
begins at birth but the roles and extent of vertically versus
horizontally acquired microbes is still debated (Ferretti et al.,
2018; Korpela and de Vos, 2018; Moeller et al., 2018; Brito
et al., 2019). One drawback of insect models is that specific
mechanisms enabling transmission and colonization of beneficial
microbes likely differ considerably between insects and humans
(e.g., coprophagy is normal behavior for all termite colony
members, while fecal microbiota transplant in humans is
a medical procedure for the sick). Similarly, humans may
travel further and interact with other communities introducing
complicated interactions that may not be captured with insect
models. However, the defined social structures of eusocial insects
may be useful for understanding and manipulating microbial
transmission later in life. Reproductive queens have limited
contact with other adult workers, for instance, and understanding
when and how they share microbes with other castes could
illuminate the social elements of microbial transmission (Otani
et al., 2019). Microbiomes of distinct nest structures provide
an interesting comparison to the idea of built environments
(Sharma and Gilbert, 2018).

Additionally, social insect models may address how
environmental perturbations such as diet or temperature change
the overall community response to pathogens and illuminate
fitness effects in different contexts. For example, different
substrates used in leafcutter ant fungal gardens impacts overall
colony survivorship (Khadempour et al., 2016). While some
leafcutter ants associate with defensive symbionts as described
above, others rely on their own chemical defenses (Fernández-
Marín et al., 2009). The leafcutting ant model could be used to
explore how resilient different defensive strategies (chemical or
biological control) are to perturbations such as the availability of
different substrates. Fisher et al. (2019) predict how other social
insect characteristics (including degree of specialization and nest

architecture) may enhance susceptibility or resilience to various
climate perturbations. The relative simplicity of insect models
could help test and reveal basic principles to understand how
microbial defenses change in different contexts.

CONCLUSION

How societies effectively address risk of pathogen exposure is of
increasing concern, especially as the human population size and
density rises. Social insects provide a window to explore disease
management on a society-wide scale. Increasingly, defensive
symbionts are recognized for their valuable role in mitigating
pathogens, in insects as well as in humans. Social insects can
act as useful models to address the role of defensive symbionts
in societies and their interactions with physiological, chemical,
and behavioral defenses. Examples from insects provide insight
for microbiome-based therapies and agricultural products, as well
as help address basic questions on how beneficial microbes are
transmitted, maintained, and perturbed in social animals.
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