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Abstract 
Automated grading machines that quantify knots are increasingly deployed by lumber mills, however their use in mill studies 
that assess lumber quality have been limited. The objective here was to develop a method to evaluate the knots of loblolly pine 
lumber using image analysis and to develop models to predict modulus of elasticity (MOE) and modulus of rupture (MOR) 
from 171 pieces of dimension lumber. Lumber was photographed on the wide faces and individual knots were identifed 
using the k-means clustering algorithm. The percentage of wood made up of knots on the wide faces (Knot%) was calculated 
by summing the individual knot areas over the total surface area, as well as on a sub-section of the lumber span which was 
optimized separately for MOE (Knot%MOE) and MOR (Knot%MOR). Models were built using the knot measurements and 
compared to models built using specifc gravity (SG) and acoustic velocity squared (AV2). Knot% explained 30% of the vari-
ation in MOE and 39% of the variation in MOR. Incorporating Knot%MOE into a model with SG and AV2 did not appreciably 
improve model performance (R2 = 0.75, RMSE = 1.1 GPa) over the base SG and AV2 model (R2 = 0.74, RMSE = 1.2 GPa). 
Incorporating Knot%MOR into a model with SG and AV2 signifcantly improved the prediction (R2 =0.65, RMSE =7.2 MPa) 
compared to the base SG and AV2 model (R2 = 0.56, RMSE = 8.0 MPa). This study demonstrates the feasibility of using 
image analysis to assess knot information in lumber to improve predictions of mechanical properties. 

1 Introduction 

The southeastern United States has become one of the most 
important regions for softwood lumber production due to 
the abundant raw material availability of southern pine that 
was established through extensive forestation of abandoned 
agricultural felds (Schultz 1999; Wear and Greis 2002; Fox 
et al. 2007). The major southern pines consist of loblolly 
(Pinus taeda), slash (Pinus elliottii), longleaf (Pinus palus-
tris), and shortleaf (Pinus echinata) pines (South and Harper 
2016). The region’s timber production doubled between the 
1950s and the 1990s, and it now supplies approximately 16% 
of the world’s timber (Wear and Greis 2002). The timber 
growth increases are the result of a combination of improved 
genetic material and intensive silvicultural practices (Jokela 

et  al. 2009), which has led to reduced rotation ages as 
loblolly pine trees reach merchantable size faster than in 
the past. For example, loblolly trees can obtain sawtimber 
size (diameter at breast height (DBH) ≥ 31 cm) and chip-n-
saw size (23 cm ≤ DBH ≤ 30 cm) by 25 and 16 years of age, 
respectively (Clark et al. 2008; Vance et al. 2010). 

The reductions in rotation age have resulted in a larger 
proportion of corewood (juvenile wood) in the merchantable 
trees (Burdon et al. 2004; Moore and Cown 2017). Core-
wood, starting from the pith, and laid down outward, is the 
wood formed in young trees, while outerwood is formed 
later on as the tree matures (Burdon et al. 2004; Lachen-
bruch et al. 2011). Corewood is characterized by lower stif-
ness and strength, and higher longitudinal shrinkage, com-
pared to outerwood (Ying et al. 1994; Larson et al. 2001). In 
loblolly pine, the low stifness and strength of corewood is 
the result of low specifc gravity (SG) (wood density divided 
by water density) and high microfbril angle (MFA), espe-
cially for the growth rings near the pith (Burdon et al. 2004; 
Cramer et al. 2005; Jordan et al. 2007; Clark et al. 2008). As 
a consequence of the changes that have occurred in south-
ern pine wood quality, in 2013, the engineering design val-
ues for visually graded southern pine lumber were reduced 
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to address the lower mechanical properties of the lumber 
being produced and available in commerce (ASTM D1990 
2016; Butler et al. 2016). For example, in the No. 2 grade, 
the design values for MOE were reduced from 11.0 GPa to 
9.7 GPa and MOR values reduced from 10.3 to 7.6 MPa in 
the 2 × 4 size (38.1 mm × 88.9 mm). 

For loblolly pine, much of the work examining the impact 
of silviculture and genetics on wood and fber quality has 
focused on the physical properties, specifcally wood SG, 
with some work done on the anatomical properties. Changes 
to branching, and thus the frequency and size of knots in the 
resultant lumber, have been given little attention. Lumber 
failure occurs at the weakest cross section relative to the 
test setup, which is often at a knot or near knots because of 
severe grain deviations around the knots (Madsen 1992; Hu 
et al. 2018a). Recent technological advancements have made 
the rapid measurement of knots feasible. Knots have been 
imaged using single pass X-ray scanners where knot zones 
are detected on the wide face, and their corresponding depths 
determined by the penetration of the X-rays through to the 
detector(s) beneath (Schajer 2001; Oh et al. 2008, 2009). 
In a study by Schajer (2001), a single pass X-ray scanner 
was used to measure wood density of southern pine lumber, 
with the knots identifed by their higher density. Material 
for the study was acquired from 3 mills, with 2 mills sam-
pled from Arkansas (N = 311, N = 136), and 1 mill sampled 
from Mississippi (N = 158). Schajer (2001) found that pre-
dicted lumber strength, based on a wood structural factor 
accounting for localized density, increases from knots, and 
linear models were able to explain 57%, 65%, and 69% of 
the variation in the modulus of rupture (MOR) determined 
from bending tests of samples from the 3 diferent mills. Oh 
et al. (2008), again using a single pass X-ray scanner, found 
that the ratio between the moment of inertia of the knot to 
the full cross section explained 65% of the variation in MOR 
using a linear model for 141 pieces of Japanese larch (Larix 
kaempferi). 

The quantifcation of knots is increasingly done via meas-
urement of the “tracheid efect”, whereby a camera, in con-
junction with a series of lasers, is used to measure localized 
wood fber orientation changes within the wood due to knots 
(Roblot et al. 2010; Briggert et al. 2018). In contrast to the 
X-ray measurement of knots, measuring knots via the trac-
heid efect ofers the advantage of capturing distinct infor-
mation on all four sides of the lumber. Roblot et al. (2010) 
used the tracheid efect to detect knots in Douglas-fr (Pseu-
dotsuga menziesii) (N = 226) and Norway spruce (Picea 
abies) (N = 225) dimension lumber. From projections of the 
knots into the lumber, from all 4 surfaces, they calculated the 
knot area ratio, which corresponds to the cross-sectional area 
of the knot(s) divided by the total cross-sectional area of the 
lumber in the same plane. Predicting MOR using a multiple 
regression linear model from knot area ratio and modulus 

of elasticity (MOE) determined dynamically explained 55% 
of the variation in MOR for Norway spruce and 70% of the 
variation for Douglas-fr. Olsson et al. (2013) calculated 
localized wood fber orientation using the tracheid efect and 
combined this information with measurements of dynamic 
MOE for Norway spruce (N = 105). They found that their 
model explained 71% of the variation in MOR, an improve-
ment from the coefcient of determination of 59% when pre-
dicting MOR from dynamic MOE alone. Using both X-ray 
information and the tracheid efect, Viguier et al. (2017) 
examined 437 samples of Norway spruce and 805 samples of 
Douglas-fr. They found that predicted MOE explained 79% 
(Norway spruce) and 75% (Douglas-fr) of static MOE, and 
predicted MOR explained 68% (Norway spruce) and 58% 
(Douglas-fr) of MOR. 

Recent changes in design values for southern pine lum-
ber, in conjunction with a wider implementation of intensive 
silviculture practices, have increased the need to evaluate 
the raw material supply chain to further understand the 
mechanical properties of lumber being produced. While the 
use of commercial scanning equipment via X-rays and/or 
the tracheid efect can provide accurate knot quantifcations, 
most laboratories do not have access to the equipment and 
thus there is a need to develop alternative methods for knot 
quantifcation that can be readily implemented in a labora-
tory setting. These methods need to improve on the manual 
measurement techniques that typically evaluate knots fol-
lowing testing to failure (França et al. 2018). Recent work 
has characterized knots in Douglas-fr veneers using image 
analysis (Todoroki et al. 2010); it appeared feasible that an 
adaptation of the technique could be an efective method for 
measuring the knots in lumber. The objectives of this study 
were to (1) test the feasibility of using image analysis to 
identify and quantify knots in loblolly pine lumber, and (2) 
develop models between MOE and MOR with transforma-
tions of knot areas on selected lumber surfaces, and compare 
the results to models developed using SG and acoustic veloc-
ity. Characterization of knots using image analysis, which is 
of much lower capital investment than the use of an X-ray or 
laser (tracheid efect) equipment, could lead to more stud-
ies investigating the relationships between knots in lumber 
and silviculture practices, thereby leading to improved forest 
management decisions. 

2 Materials and methods 

2.1 Lumber source 

Trees used in this study were harvested from intensively man-
aged stands in the United States southeast lower coastal plain, 
near Brunswick, Georgia. Further details on the sampling pro-
tocol can be found in Butler et al. (2016; 2017) and Dahlen 
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et al. (2018). Trees were felled, delimbed, and bucked into 
5.2 m logs in the woods prior to transport to the participat-
ing mill (Hoboken, GA, USA) where the logs were sawn into 
dimension lumber, kiln-dried to a target moisture content of 
15% to ensure each piece was less than 19%; the lumber was 
then planed and graded into the No. 1, No. 2, and No. 3 grades 
according to the visual grading rules for southern pine (ASTM 
D245-11 2011; SPIB 2004, 2014). Following processing, the 
lumber was transported to the Wood and Fiber Quality Labo-
ratory at the University of Georgia in Athens, GA, USA. A 
subset of the lumber was included for this study as follows: 72 
pieces of 2×6 nominal lumber (38.1 mm×139.7 mm) with 
13 pieces graded as No. 1, and 59 pieces graded as No. 2; 99 
pieces of 2×8 nominal lumber (38.1 mm by 184.2 mm) with 
59 pieces graded as No. 1, and 40 pieces graded as No. 2. 

2.2 Lumber image collection and testing 
procedures 

The lumber was prepared and tested in a laboratory with con-
ditions that were typically near 24 °C and 55% RH. Prior to 
trimming the lumber to approximate test span dimensions, the 
strength reducing defect was predicted by visually inspecting 
each piece, with an emphasis placed on identifying the largest 
knot and including it randomly in the test span (ASTM D4761 
2013). The lumber was then trimmed to the 17 to 1 span to 
depth ratio plus an allowance for overhang on the reaction 
points. The SG of the lumber was calculated using the meas-
ured weight and dimensions, and moisture content was deter-
mined using a handheld moisture meter calibrated to south-
ern pine (Wagner Meter, Rogue River, OR, USA). The mean 
lumber moisture content was 11.2%. The measured SG values 
were then adjusted to 15% moisture content (oven dry weight, 
volume at 15% moisture content) using a volumetric shrink-
age rate of 12.3% (Glass and Zelinka 2010) to correspond to 
the 15% moisture content used for the mechanical properties 
(ASTM D1990 2016). The longitudinal acoustic velocity was 
measured using the Fakopp Portable Lumber Grader (PLG) 
(AVPLG) (Fakopp BT, Agfalva, Hungary) which calculates the 
acoustic velocity (m s−1) using the frst harmonic frequency of 
a resonant wave (Wang 2013): 

AV = 2f0L (1) 
where AV is weighted mean acoustic velocity (m s−1), f0 is 
the frst harmonic frequency of an acoustic wave signal (Hz) 
and L is the length (m) of the material (Wang 2013). The AV 
term is squared in the calculation of dynamic MOE: 

MOEdyn = ˜AV2 (2) 

where MOEdyn is dynamic MOE determined using wood 
density (ρ) and AV (Wang 2013); thus the results here are

−2reported as AV2 with units of km2 s . 

Because the intent of this project was not to develop an 
instrument for automatically grading lumber in a commercial 
setting, but was instead to determine the impact that knots have 
on the mechanical properties of lumber, the knotty regions 
were delineated from clearwood by flling in the knots using 
a black marker. This was a straightforward operation since 
southern pine has knots that are very easy to delineate from 
clearwood upon visual inspection. Each piece of lumber was 
then photographed in color (RGB) on the wide faces using a 
Nikon D300 12.3 megapixel camera with a Nikon 12–24 mm 
wide angle lens (Tokyo, Japan). The camera was set at a fxed 
position on a tripod and the lumber placed on a table with end 
and side stops such that each piece was in the same position 
relative to the camera. The lighting was a combination of the 
building lighting plus the fash from the camera. The narrow 
faces of the lumber were not photographed and thus the tech-
nique mimics the aforementioned single pass X-ray measure-
ments used to quantify knots (Oh et al. 2008). Each piece had 
a unique number, which was used to manually pair the two 
images with the rest of the data. 

Each piece of lumber was then tested in static edgewise 
destructive bending (ASTM D4761 2013; ASTM D198 2015) 
using a four-point bending setup in “third-point” loading (load 
heads positioned one third of the span distance from the reac-
tions) on a universal testing machine. The span-to-depth ratio 
was 17:1 (2 × 6: 2375 mm to 140 mm, 2 × 8: 3131 mm to 
184 mm). The MOE was determined from the displacement 
of the lumber caused by the applied load in the linear region, 
with the linear displacement measured at mid-span. The for-
mula for MOE is: 

23PL3 
MOE = (3)

108bd3Δ

where P is the change in load between two load points in 
the linear region, L is the span, b is the base of the beam, d 
is the depth of the beam, and Δ is the change in defection 
corresponding to the two load points (ASTM D198 2015). 
It is noted that the ASTM D198 (2015) standard does not 
discuss global or local MOE terminology, however the MOE 
method and calculation is equivalent to global MOE method 
as described by Olsson et al. (2012): 

˜ ˝ 

° ˛ ° ˛3 
PL3 3a a

MOE = − (4)
bd3Δ 4L L 

where the terms in Eq. (4) are the same as in Eq. (3) with the 
addition of a, which is the distance between a support and 
the nearest load point. Because the setup was in third-point 
loading, a is equal to one third of L, thus Eq. (4) simplifes 
to Eq. (3) when substituting one third of L for a. The MOR 
was determined from the total amount of load applied at the 
moment of failure using: 

P L 
MOR = max (5)

bd2 
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where Pmax is the maximum load. Following testing, the 
length to failure and type of failure (tension, compression, 
shear, and combination) were recorded. The mechanical 
properties were adjusted to 15% moisture content (Evans 
et al. 2001; ASTM D1990 2016; Butler et al. 2016). 

2.3 Image analysis 

The image analyses were done in the R statistical software 
environment (R Core Team 2018) and the Python program-
ming language version (Python Software Foundation, https 
://www.python.org/). R was used with the RStudio interface 
(RStudio 2018) and the packages maps (Brownrigg 2016), 
raster (Hijams 2016), rgdal (Bivand et  al. 2017), rgeos 
(Bivand and Rundel 2017), sp (Pebesma and Bivand 2016), 
and the tidyverse series of packages (Wickham and RStu-
dio 2017). Python 3.6 was used with the packages NumPy 
(Oliphant 2006), opencv (Bradski 2000), pandas (McKin-
ney 2010), and scikit-image (skimage) (van der Walk et al. 
2014). 

The following steps were carried out in R (R Core Team 
2018). The original RGB image, which included some back-
ground information, was cropped to roughly correspond to 
the region of interest. A white mask was then applied to 
isolate the lumber from the background information that 
could not be removed during the rough cropping procedure. 
Both the rough cropping and the white mask were applied 
manually. Contrast stretching was done for each channel of 
the RGB image to equalize the contrast across the piece: 

intensity−min
intensity = × 255 (6)

max−min 

where intensity is the value ranged from 0 to 255, min is the 
minimum intensity for the image, and max is the maximum 
intensity of the image. K-means clustering was then used to 
separate the knotty regions within the lumber, which works 
by classifying the intensity of light for each pixel informa-
tion, ranging from 0 to 255 for 8-bit images for each color 
channel of the RGB image, into a limited number of inten-
sity values, which corresponds to the number of clusters 
selected (Hartigan and Wong 1979; Kanungo et al. 2002). 
Because the algorithm incorrectly identifed some regions 
of the lumber that were not knots, a manual identifcation of 
the correct knot clusters was done to ensure that the selected 
areas were actual knots. Following the manual confrma-
tion of the knots, the color of the knots on the images were 
changed to red, such that further identifcation of knots could 
be automatic, and the images then saved. 

The following steps were then carried out in Python 
(Python Software Foundation, https://www.python.org/) 
on the images that were saved as described above. Because 
camera lenses have distortion, and to correct any misalign-
ment between the focal plane of the lens and the lumber 

piece, the image distortion was corrected by applying a pro-
jective transformation, which identifed the corner coordi-
nates of each image and stretched them to the undistorted 
coordinates; the procedure is described in Hartley and Zis-
serman (2003) and in the documentation for the scikit-image 
library (van der Walk et al. 2014). For each lumber piece, 
images were collected on the two wide faces. The second 
image for each piece was fipped on the horizontal axis such 
that the knots were correctly aligned between the compres-
sion and tension testing faces. The k-means clustering algo-
rithm was again run and then the knot size and position were 
determined. The number of k-means clusters selected var-
ied between pieces so that the best cluster could be chosen 
for each piece to allow for optimal separation of the knots 
from the clearwood. The location of the lumber failure was 
converted from centimeters to pixels and then the location 
failure was plotted onto each image as line perpendicular to 
the main axis. 

2.4 Data analyses 

The statistical analyses and associated graphics were done in 
the R statistical software environment (R Core Team 2018) 
with the RStudio interface (RStudio 2018), the gridExtra 
(Auguie 2016) package, and the tidyverse series of packages 
(Wickham and RStudio 2017). 

The list of knots, with their locations and sizes, was used 
to calculate the percent of the piece that was composed of 
knots. Knots from the entire piece, including the overhang 
past the reaction points, were frst considered in three ways. 
The frst was based on the grading rules, which considers 
the width of the knot and not the length of the knot (SPIB 
2004; ASTM D245 2011). The sum of the knot widths were 
compared to the width of the piece (Knot%Width): 

∑

KnotWidth 
Knot%

Width 
= × 100 (7)

Width 

where the sum of the knot widths (Knot%Width) from both 
faces was compared to the overall width of the piece. The 
second method used the actual area of the knots (Knot%) 
by calculating the actual area of each knot in pixels, then 
summing these areas and dividing by the total lumber area, 
in pixels, of the two wide faces. The third method used the 
rectangular area of the knots (Knot%Rectangle), which was 
calculated by the minimum and maximum X (length) and 
Y (width) pixel values, and then summing these areas and 
dividing by the total lumber area, in pixels, of the two wide 
faces. Where appropriate, the pixel values were converted 
to metric dimensions to generate summary statistics for the 
knot sizes. For the three knot percentage measurements 
(Knot%Width, Knot%, Knot%Rectangle), a square root transfor-
mation was applied to improve linearity between the knot 
measurement and MOE or MOR. Correlations between 

https://www.python.org/
https://www.python.org/
https://www.python.org/
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variables were calculated and the knot percentage measure-
ment that had the highest correlation to MOE and MOR was 
selected for further analysis. 

The bending test uses a four-point bending setup in 
“third-point” loading where the load heads are positioned 
one third of the span distance from the reaction points and 
thus the region with the highest stress is in between the load 
heads. Here 74% of the pieces failed in between the two load 
heads (Butler et al. 2016). Because not every piece fails in 
between the load heads, the question arises as to how much 
infuence knots outside of the load heads have on MOE and 
MOR. It is hypothesized that knot frequency and size would 
infuence MOR in a narrower distance over the total span 
than MOE since failure is common at a single knot or a 
combination of knots. Failure is also associated with being 
close to or directly under the load heads. To determine this 
efect, a knot percentage calculation was conducted that 
included knots in between the load heads (33% of the span), 
and then iteratively increased the distance until the full span 
was accounted for (100% of the span), where the distance 
increased outside the load heads by one half percent each 
iteration. A linear model explaining the efect of each of 
the knot percentages, at each iteration, was run for MOE 
and MOR. 

The wood failure location was plotted onto each image 
and the type of failure was examined for each piece (ten-
sion, compression, and shear). This information was used to 
classify the cause of the failure into one of three categories 
as follows: clear wood, failure as a result of a single knot, 
and failure as a result of a combination of knots. Pieces that 
failed in shear were classifed as clearwood failures. Sum-
mary statistics were calculated for each wood property vari-
able for the overall dataset and for the diferent causes of 
failure. Analysis of variance (ANOVA) at a 0.05 signifcance 
level was used to determine signifcant diferences in the 
means of the diferent variables with mean separation done 
using Tukey’s test. 

Linear and multiple linear regression models were con-
structed to determine the relationship between the depend-
ent variables (MOE and MOR) with the independent vari-
ables (knot percentage, SG, AV2, MOEdyn). Models were 

compared between using MOEdyn calculated using Eq. (2), 
versus the performance of models ft using both the indi-
vidual SG and AV2 variables. Model ft was evaluated using 
the coefcient of determination (R2) and the root-mean-
square-error (RMSE) and between model performance was 
determined using ANOVA. Because SG and AV2 are rela-
tively easy to measure on lumber pieces, a multiple regres-
sion model including SG and AV2 was used as the base-
line model to determine whether including knot percentage 
values would signifcantly improve the model results, and 
thus whether the knot percentage values determined here are 
worthwhile measurements above and beyond SG and AV2. 
The same comparison was conducted using MOEdyn instead 
of using the SG and AV2 parameters separately. 

3 Results and discussion 

3.1 Optimization of knot area ratio measurements 
and correlations between variables 

Figure 1 shows four images of the same sample, two for each 
of the wide faces photographed. The two grayscale images 
(converted from RGB) show the knots identifed in black on 
each face with the vertical line illustrating the location of the 
failure after mechanical testing. For illustration purposes, the 
binary (black and white) images show the knots completely 
delineated from the rest of the wood. Figure 2 shows a closer 
view of a section of the same sample illustrated in Fig. 1, 
which demonstrates the efect of the k-means algorithm in 
grouping the pixels into a limited number of clusters. For 
identifying the knots on the grayscale images, the number 
of k-means clusters depended on the specifc image with the 
median number of clusters used being 6, but some images 
required 7 or 8 clusters to properly allow for separation of 
the knots from the clear wood. The correlations between the 
three knot measurements were strong (Table 1), with Knot% 
vs. Knot%Rectangle having the highest correlation (R = 0.98). 
Knot% had slightly higher correlations to MOE (R = − 0.55 
versus − 0.54) and MOR (R = − 0.63 versus − 0.62) than 
Knot%Rectangle, with both having higher correlations to MOE 

Fig. 1    Example images showing the two wide faces of a single piece 
of 2  ×  6 nominal lumber. The grayscale images show the knots iden-
tifed using the k-means clustering algorithm, and the black verti-

cal line indicates where the failure occurred. The binary (black and 
white) images show the knots (white) isolated from the rest of the 
piece (black) 
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Fig. 2    Closer view of section from Fig. 1 with the black line indicating failure location and pasted onto the image. The left image shows the 
grayscale image with the knots marked with black marker, and the right image shows the knots identifed using the k-means clustering algorithm 

Table 1 Pearson correlation matrix among measures of knots and 
modulus of elasticity and modulus of rupture, all coefcients were 
statistically signifcant (α < 0.05) 

Property Knot% Knot%Rectangle MOE MOR 

Knot%Width 0.86 0.88 − 0.46 −0.53 
Knot% 0.98 − 0.55 −0.63 
Knot%Rectangle − 0.54 − 0.62 

Knot%Width percentage of knots determined from the width of the 
knots, Knot% percentage of area with knots determined using the 
actual area of the knots, Knot%Rectangle percentage of area with knots 
determined using the rectangle area of the knots, MOE static modulus 
of elasticity, MOR modulus of rupture 

and MOR than Knot%Width. Based on these results, Knot% 
was used during the modeling and optimization efforts 
which is the knot measurement using the actual area of the 
knots. 

Table 2 shows the summary statistics of the knots overall 
and by lumber nominal dimension. On average, the number 
of knots were more numerous for the 2 × 8 lumber (N = 22), 
and larger (mean =6 cm2), than for the 2×6 lumber (N =16, 
mean=4.7 cm2), which was expected because larger lumber 
nominal dimensions have longer test spans and larger allow-
able knot sizes with a given grade. The standard deviation 
for knot size was quite high (7.4 cm2), which demonstrates 
that knot sizes are highly variable in loblolly pine lumber 
with some knots being quite large, whereas other knots are 
quite small. 

The correlations between variables are shown in Table 3, 
and the results of optimizing the measurement of Knot% for 
MOE and MOR are shown in Fig. 3. The optimal knots in 
the span to include for predicting MOE were within 85% of 
the span (Knot%MOE). As the percent of span increased from 
33 to 85% there was a gradual increase in the coefcient 
of determination for the linear model. Following the peak 

Table 2 Summary statistics of number and size of knots in lumber 

Property Lumber Dimen- Mean Standard Quantile 
sion deviation 

25th 75th 

Number of knots 2×6 16 5 13 20 
2×8 22 7 17 25 
Overall 20 7 15 24 

Knot Size (cm2) 2 × 6 4.7 6 0.9 6.0 
2×8 6.0 8 1.2 7.4 
Overall 5.6 7.4 1.1 7 

reached at 85%, there was a gradual decline in the coef-
fcient of determination. For MOR, the results were clearer 
in that the linear model results increased from 33 to 65% of 
the span (Knot%MOR), and then showed a decline after the 
peak was reached at 65% of the span. In both cases, these 
results may be specifc to the samples used here and thus 
caution should be exercised when applying these results to 
the entire population of southern pine lumber. Nevertheless, 
Knot% values optimized for MOE (Knot%MOE) and MOR 
(Knot%MOR) were calculated, where Knot%MOE included the 
knots located in 85% of the span, and Knot%MOR included 
the knots located in 65% of the span. As expected, the difer-
ent measurements of Knot% were positively correlated with 
each other, and negatively correlated with SG, AV2, MOE, 
and MOR, per the Pearson correlation coefcients (R). For 
the properties that can be assessed nondestructively, the 
highest correlation to MOE was with SG (R = 0.78), which 
was better than AV2 (R=0.66) and Knot% (R =−0.55), with 
Knot%MOE (R = − 0.57) slightly improving on the correla-
tion compared to Knot%. As expected, calculating dynamic 
MOE (MOEdyn) using SG and AV2 resulted in improved 
correlations to MOE (R = 0.82) and MOR (R = 0.74) versus 
either single parameter. The highest correlation to MOR 
with a single variable was with Knot%MOR (R = − 0.66) and 
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Table 3    Pearson correlation 
matrix among wood properties 
measured, all coefcients 
were statistically signifcant 
(α <  0.05) 

Property 

Knot% 
Knot%MOE 

Knot%MOR 

Knot%MOE 

0.91 

Knot%MOR 

0.85 
0.91 

SG 

− 0.52 
− 0.48 
− 0.42 

AV2 

−0.51 
−0.54 
−0.51 

MOEdyn 

− 0.60 
− 0.60 
− 0.55 

MOE 

− 0.55 
− 0.57 
− 0.53 

MOR 

− 0.63 
− 0.64 
− 0.66 

SG 0.43 0.75 0.78 0.66 
AV2 0.91 0.66 0.62 
MOEdyn 

MOE 
0.82 0.74 

0.78 

Knot% percentage of wood made up of knots on the wide faces, Knot%MOE Knot% optimized for MOE 
using 85% of the span, Knot%MOR Knot% optimized for MOR using 65% of the span, SG specifc gravity, 
AV2 acoustic velocity squared, MOEdyn dynamic modulus of elasticity, MOE static modulus of elasticity, 
MOR modulus of rupture 

Fig. 3 Selection of the optimal amount of the span to include in the knot area ratio measurement to improve modulus of elasticity and modulus 
of rupture predictions. Note that 33% is the amount of span associated with the load heads and 100% is the entire span 

SG (R = 0.66), which had a slight improvement over Knot% 
(R = − 0.63), and AV2 (R = 0.62). 

3.2 Summary statistics and comparison 
between wood properties by failure cause 

Summary statistics for the relevant variables are presented 
in Table 4. Of the 171 pieces in the study, 52 failed in clear 
wood, 86 failed as a result of a single knot, and 33 failed 
as a result of a combination of knots (i.e., 2 or more knots 
in close proximity). The ANOVA results show statistically 
signifcant diferences between the means of the Knot%, SG, 
AV2, MOEdyn, MOE, and MOR due to failure type; the dis-
tributions of data points for MOE and MOR by reason of 
failure are shown in boxplots (Fig. 4). For all variables, clear 
wood failure was always signifcantly diferent from that by 
a single knot or by multiple knots. Failure by a single knot 
was not signifcantly diferent from failure by multiple knots 
except for Knot%MOE, Knot%MOR, and MOR. Not surprising 
here is that the clear wood failures occur in wood that has 
higher mechanical properties, coinciding with higher SG 

(0.54), AV2 (22 km2 s−2) and MOEdyn (12.1 GPa) and lower 
Knot% values; this could be attributed to the pieces being 
from the outerwood, whereas corewood would have lower 
SG, AV2, MOEdyn, and larger Knot%. The boxplots show 
that failure at a single knot had a slightly lower minimum 
value for MOE and MOR compared to failure at clearwood, 
whereas failure because of multiple knots had much lower 
minimum values for both MOE and MOR. 

3.3 Modeling modulus of elasticity and modulus 
of rupture 

Single and multiple linear regression models are shown 
in Table 5 for both MOE and MOR. The plots of MOE 
are shown in Fig. 5. For the prediction of MOE, Knot% 
explained 30% of the variation (RMSE = 1.9 GPa). Opti-
mizing the knots included in the Knot% measurement 
(Knot%MOE) resulted in a slightly improved prediction of 
MOE (R2 = 0.32, RMSE = 1.9 GPa). Both SG (R2 = 0.6, 
RMSE = 1.4 GPa) and AV2 (R2 = 0.44, RMSE = 1.7 GPa) 
were more accurate at predicting MOE than the Knot% 
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Table 4    Summary statistics for 
all lumber and by failure cause 

Failure cause Statistic Knot% Knot%MOE Knot%MOR SG AV2 MOEdyn MOE MOR 

Overall Mean 0.9 0.9 0.9 0.51 21 10.9 10.6 39.2 
N = 171 Min 0 0 0 0.41 13 6.4 4.5 12.7 

Max 2.4 2.6 3.1 0.64 31 18.6 17.5 72.8 
Std 0.5 0.5 0.6 0.05 3 2.3 2.3 12.3 

Clear wood Mean 0.6a 0.6a 0.5a 0.54a 22a 12.1a 11.6a 46.6a 
N = 52 Min 0 0 0 0.44 15 7.7 7.3 24.5 

Max 1.8 1.9 2.2 0.64 29 16.8 15.6 72.8 
Std 0.4 0.4 0.4 0.05 3 2.4 2.1 12.1 

Single knot
N= 86 

Mean 
Min 

1b 
0.3 

0.9b 
0.2 

0.9b 
0.1 

0.51b 
0.41 

21b 
13 

10.6b 
6.4 

10.5b 
6.4 

37.6b 
20.4 

Max 2.4 2.5 2.9 0.63 31 18.6 17.5 64.1 
Std 0.5 0.5 0.5 0.05 3 2.2 2.2 10.6 

Multiple knots
N =33 

Mean 
Min 

1.1b 
0.3 

1.2c 
0.4 

1.3c 
0.3 

0.49b 
0.44 

20b 
16 

10.0b 
7.2 

9.4b 
4.5 

32c 
12.7 

Max 2 2.6 3.1 0.57 26 14.6 13.8 54.2 
Std 0.5 0.5 0.6 0.04 3 1.9 2.3 11 

Knot% percentage of wood made up of knots on the wide faces, Knot%MOE Knot% optimized for MOE 
using 85% of the span, Knot%MOR Knot% optimized for MOR using 65% of the span, SG specifc gravity, 
AV2 acoustic velocity squared (km2 s−2), MOEdyn dynamic modulus of elasticity (GPa), MOE static modu-
lus of elasticity (GPa), MOR modulus of rupture (MPa). Letters denote signifcant diferences (α < 0.05) in 
each column by Tukey test due to failure type 

Fig. 4 Boxplots of modulus of elasticity and modulus of rupture by 
reason of failure where lumber failed in clear wood, at a knot, or at 
multiple knots (≥ 2). The boxplots show each data point, the frst 

quartile (or frst quantile to be consistent with Table 1), median and
the 95% confdence interval of the median, and the third quartile 

measurements. The base model of SG and AV2 explained 
74% of the variation in MOE and had a RMSE of 1.2 
GPa. Adding Knot% to this base model did not result in 
an improved model (not shown in table because not sig-
nifcant). Adding Knot%MOE to the base model in place of 
Knot% resulted in the Knot%MOE term to be signifcant, 

and a signifcantly better model determined using ANOVA 
compared to the base model (p = 0.025), however the 
prediction statistics for the models were nearly identi-
cal (RMSE = 1.1 GPa) and the variation explained only 
increased by 1% (R2 = 75%). Thus, it was felt the results 
were not practically signifcant. Calculating MOEdyn from 
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Table 5    Regression parameters 
for linear models using modulus 
of elasticity and modulus 
of rupture as the dependent 
variables 

Model 

y Equation 

Regression 
statistics 

R2 RMSE 

Model parameters 

β0 β1 β2 β3 

MOE (GPa) β0 + β1Knot% 0.30 1.9 14.8 −4.6 
β0 + β1Knot%MOE 0.32 1.9 14.6 −4.5 
β0 + β1SG 0.60 1.4 − 8.1 36.4 
β0 + β1AV2 0.44 1.7 0.8 0.5 
β0 + β1MOEdyn 

β0 + β1SG + β2AV2 
0.68 
0.74 

1.3 
1.2 

1.7 
− 10.1 

0.8 
28.5 0.3 

β0 + β1Knot% +β2MOEdyn 0.69 1.3 3.2 −0.9 0.8 
β0 + β1Knot%MOE + β2MOEdyn 

β0 + β1Knot%MOE + β2SG + β3AV2 
0.69 
0.75 

1.3 
1.1 

3.4 
− 7.9 

−1.0 
−0.8 

0.7 
27.0 0.3 

MOR (MPa) β0 + β1Knot% 0.39 9.6 64.4 − 27.9 
β0 + β1Knot%MOR 0.43 9.2 62.2 − 26.3 
β0 + β1SG 0.43 9.2 − 46.1 166.0 
β0 + β1AV2 0.38 9.6 − 10.2 2.3 
β0 + β1MOEdyn 

β0 + β1SG + β2AV2 
0.54 
0.56 

8.4 
8.0 

− 3.1 
− 56.5 

3.9 
121.8 1.6 

β0 + β1Knot% +β2MOEdyn 0.59 7.9 18.7 − 13.1 3.0 
β0 + β1Knot%MOR +β2MOEdyn 

β0 + β1Knot% +β2SG + β3AV2 
0.63 
0.61 

7.5 
7.6 

21.0 
− 25.8 

− 14.5 
− 11.9 

2.8 
97.0 1.2 

β0 + β1Knot%MOR +β2SG + β3AV2 0.65 7.2 − 21.1 − 14.3 100.0 1.0 

Knot% percentage of area with knots determined using actual area, Knot%MOE Knot% optimized for MOE 
using 85% of the span, Knot%MOR Knot% optimized for MOR using 65% of the span, SG specifc gravity, 
AV2 acoustic velocity squared (km2 s−2), MOEdyn dynamic modulus of elasticity (GPa), MOE static modu-
lus of elasticity (GPa), MOR modulus of rupture (MPa) 

SG and AV2 resulted in a decrease in model performance 
(R2 = 0.68, 1.3 GPa) over the base model, with similar per-
formance decreases when also adding Knot% or Knot%MOE 
to the MOEdyn model. 

The plots of MOR are shown in Fig. 6. For the pre-
diction of MOR, Knot% explained 39% of the variation 
(RMSE = 9.6 MPa). Optimizing the knots included in the 
Knot% measurement (Knot%MOR) resulted in a slightly 
improved prediction of MOR (R2 =0.43, RMSE =9.2 MPa). 
For the prediction of MOR, Knot%MOR was identical to the 
accuracy of SG model (R2 = 0.43, RMSE = 9.2 MPa) and 
both were better than AV2 (R2 = 0.38, RMSE = 9.6 MPa). 
The base model of SG and AV2 explained 56% of the varia-
tion in MOR with a RMSE of 8.0 MPa. Adding Knot% to this 
base model resulted in an improved model with R2 = 0.61 
and RMSE = 7.6  MPa, which was further improved by 
replacing it with Knot%MOR (R2 = 0.65, RMSE = 7.2 MPa). 
The base model of SG and AV2 had improved performance 
over the model with MOEdyn. 

The image analysis approach used here demonstrated the 
ability to quantify knots using equipment that is consider-
ably less expensive than other systems (e.g., X-ray scanners). 
Only images of the wide faces were captured, which is com-
parable to how X-ray scanning equipment functions; this dif-
fers from measurements involving the tracheid efect, which 

typically captures images on all four sides of the lumber. 
While the diferences in equipment are notable, of specifc 
interest was whether knot information obtained via RGB 
images would be sufcient to improve the mechanical prop-
erty predictions using SG and AV2 alone. 

Results presented here show that knot information (e.g., 
Knot%) is particularly helpful in improving the predic-
tion of MOR, with the prediction of MOE not appreciably 
improving over models constructed using SG and AV2 alone. 
Recently, França et al. (2018) modeled MOE and MOR for 
southern pine, with dynamic MOE calculated using trans-
verse vibration. They calculated the knot depth ratio (KDR, 
i.e. knot thickness/lumber thickness) and knot area ratio 
(KAR, i.e. in cross section, knot area divided by total area); 
these properties were determined through manual measure-
ment by cutting open the cross section at the failure point 
and evaluating the knots within a 15 cm length. They found 
weaker relationships between knot depth ratio and both 
MOE (R2 = 0.13) and MOR (R2 = 0.2) than reported here 
for the various Knot% measurements. They did fnd stronger 
relationships between dynamic MOE and MOE (R2 = 0.84) 
than here with SG and AV2 (R2 = 0.74). While this could 
simply be due to the samples tested, it is likely due to their 
determination of dynamic MOE via transverse vibration 
which is more accurate than using wood density and AV2 
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Fig. 5 Single and multiple linear relationships between static modu-
lus of elasticity (MOE) and Knot%, Knot% optimized for MOE, spe-
cifc gravity (SG), and acoustic velocity squared (AV2). The regres-

sion line (solid black line) is shown along with the 95% confdence 
interval of the mean (gray polygon around black line) 

(Viguier et al. 2017; Dahlen et al. 2018). The present results 
also show that improved predictions can be found by ft-
ting a multiple regression model using SG and AV2 versus 
calculating MOEdyn from the two parameters. It should be 
noted that knot depth ratio can be reasonably estimated using 
density measurements determined using X-ray radiation (Oh 

et al. 2009); while this measurement method is amenable to 
automation, obstacles do exist with regard to cracks in the 
knots which gives underestimates of density, and thus can 
underestimate the knot depth ratio. 

The results found here using the combined model with 
SG, AV2, and Knot% (or Knot%MOR) gave similar coefcient 
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Fig. 6 Single and multiple linear relationships between modulus 
of rupture (MOR) and Knot%, Knot% optimized for MOR, specifc 
gravity (SG), and acoustic velocity squared (AV2). The regression 

line (solid black line) is shown along with the 95% confdence inter-
val of the mean (gray polygon around black line) 

of determination values (R2 =0.57–0.65) to those of Schajer 
(2001) with southern pine tested in bending, specifcally, 
between MOR and predicted MOR. Similar to Oh et al. 
(2009), Schajer (2001) determined knots using an X-ray 
system; however, the density values were not used to deter-
mine values for knot depth ratio, but instead, the estimate 

for MOR was determined by multiplying the clear wood 
MOR by a structural factor based on locally high den-
sity values corresponding to knots. What is not known is 
whether an image based system would improve MOE and/ 
or MOR predictions in lumber sizes greater than those tested 
here, such as the 2 × 10 (38.1 mm × 235 mm) and 2 × 12 

https://R2=0.57�0.65


914 European Journal of Wood and Wood Products (2019) 77:903–917 

1 3

 

   
   

  
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 

    
 

       

 
         

   
 

   
 

   
 
 

 
 

 
 

 
 
 
 
 
 
 

 

 
 
 
 
 

 

 
 

   

 
 
 

         
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

         
 
 
 
 

 
 
 

 
 

(38.1 mm × 285.8 mm) sizes. It is noted that the Schajer 
(2001) study utilized a much larger sample size (N = 605) 
than employed here (N = 171), and they found some vari-
ability in the results based on the samples tested, being from 
three diferent mills. 

The results presented here are also similar to the results 
that others have found in various softwood species using 
both X-ray scanning equipment (Lam et al. 2004, 2005; Oh 
et al. 2008) and equipment that measures the tracheid efect 
(Roblot et al. 2010; Olsson et al. 2013; Viguier et al. 2017; 
Olsson et al. 2018). To the authors’ knowledge, no published 
study exists for southern pine lumber using the tracheid 
efect. This makes it difcult to make comparisons between 
the tracheid efect technique and the results presented here 
using image analysis for southern pine lumber due to spe-
cies diferences. Specifcally, much of the work published 
on the tracheid efect has focused on Norway spruce and 
Douglas-fr, with the mechanical properties for spruce being 
predicted with greater accuracy than Douglas-fr, likely due 
to the large knots in Douglas-fr (Viguier et al. 2017; Olsson 
et al. 2018). Expanding the comparison to hardwoods results 
in even more variability, with very diferent relationships 
obtained depending on the particular species. For example, 
Nocetti et al. (2017) found in Eucalyptus grandis (N = 130) 
that dynamic MOE was a much better predictor of MOR 
(R2 = 0.36) than a knot parameter (R2 = 0.06); where knot 
information was determined through an algorithm combin-
ing knot position and relative size information using both the 
tracheid efect and X-ray information. In the case of Euro-
pean oaks (Quercus petraea and Quercus robur) (N = 470) 
the opposite has been found, whereby dynamic MOE had 
a poor relationship with bending strength (R2 = 0.22) ver-
sus local fber orientation found using the tracheid efect 
(R2 = 0.59) (Olsson et al. 2018). 

Commercial scanning systems that employ either X-rays, 
or diferentiate knots using the tracheid efect, have been 
successfully used by numerous researchers (Schajer 2001; 
Oh et al. 2008; Roblot et al. 2010; Olsson et al. 2013; Vigu-
ier et al. 2017) to improve prediction of mechanical proper-
ties. While the current technique is not suitable for com-
mercial operations that require online scanning of speeds 
up to 450 m min−1 (Olsson and Oscarsson 2017), it is rela-
tively inexpensive to deploy in a laboratory setting. Notwith-
standing, it is acknowledged that to augment image quality 
between the clearwood and the knots, which increased the 
capacity to measure Knot% values, necessitated the deline-
ation of the knots from the clearwood using a marker. The 
technique described herein also captures the lumber image 
in a single image. A custom-built scanner is currently being 
constructed and will image each side multiple times which 
will also allow for greater resolution to further enhance the 
knot detection eforts. One possible solution for delineating 
knots from clearwood without the use of a marker is through 

machine learning techniques which have proven useful in 
knot identifcation (Cavalin et al. 2006), apart from a mul-
titude of other applications including wood identifcation 
(Yadav et al. 2017). Future work will also concentrate on 
collecting knot information on all four faces. Collecting 
information on all four sides will allow for the quantifcation 
of knot area ratio on the cross-sectional face and will allow 
the technique to be more comparable to results from stud-
ies utilizing the tracheid efect (Roblot et al. 2010; Olsson 
et al. 2013; Viguier et al. 2017; Olsson et al. 2018). Captur-
ing images on all four sides could also allow for modeling 
of knots towards the pith following the work on Norway 
spruce using the tracheid efect (Briggert et al. 2016; Hu 
et al. 2018b; Lukacevic et al. 2019). 

As noted in Olsson et al. (2013) and explored further by 
Hu et al. (2018a), grain angle changes due to knots is an 
interesting research question. Measuring the tracheid efect 
ofers the opportunity to quantify the changes in grain direc-
tion specifc to the knot itself versus the impacts that the 
knots have on the localized slope of grain. Ehrhart et al. 
(2018) recently used image analysis techniques to measure 
the grain angle in European beech (Fagus sylvatica L.) by 
detecting the orientation of the rays relative to the longitu-
dinal surface. For hardwood species with visible rays this 
technique seems suitable for laboratory measurement of 
grain angle changes. For softwoods however, measuring the 
localized slope of grain surrounding the knots using image 
analysis on RGB images would likely not be feasible. 

Regardless of the technique employed to quantify knots, 
an improved understanding of their particular impact on 
lumber is needed. Branch size and distribution within 
wood available in commerce is changing as more material 
worldwide is sourced from fast grown plantations that are 
planted at lower planting densities (Auty et al. 2012). In 
addition to changes in the knots, the wood from these trees 
will be made up of a higher proportion of lower stifness 
and strength corewood (Burdon et al. 2004; Lachenbruch 
et al. 2011; Moore and Cown 2017). The recent decline in 
the design values for visually graded southern pine lumber 
illustrates the importance of better forecasting changes. One 
opportunity is to incorporate wood quality into forest growth 
and yield systems (Mäkinen and Colin 1998). Combining 
models of wood and fber properties with branch structure 
(Duchateau et al. 2013; Osborne and Maguire 2016), and 
incorporating them into growth and yield systems would 
allow forest managers to project growth and internal prop-
erties. Ideally these systems will have capabilities whereby 
trees can be “virtually grown” and then bucked into logs and 
sawn (Mäkelä et al. 2010). The predicted internal properties 
could then be used to predict the MOE and MOR of the lum-
ber to enable predictions of the conformance of the wood to 
product specifcations. The work assessing knots in lumber 
is an important part of this modeling chain. 
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4 Conclusion 

A process to conduct cost-efficient knot analysis in a 
laboratory setting to predict the mechanical properties 
of lumber is presented. Image analysis of loblolly pine 
lumber RGB images was conducted on the wide faces of 
the lumber from a mill study using k-means clustering to 
identify knots, which were then delineated from the clear 
wood. The Knot%, calculated on the basis of the actual 
knot area of the wide faces, improved the prediction mod-
els for the mechanical properties, with MOE and MOR 
decreasing with increasing Knot%. The best MOE model 
included knots from within 85% of the test span, while the 
best MOR model included knots from 65% of the span. 
Knot% measurements did not appreciably improve static 
MOE predictions compared to the base SG and acoustic 
velocity model, but they did signifcantly improve MOR 
predictions. These conclusions are specifc to this dataset, 
which only included 2 × 6 and 2 × 8 material; however, the 
method generated here could be used by laboratories that 
are not equipped with traditional knot scanning equipment 
to assess the impacts that knots have on the mechanical 
properties of lumber. More information is needed on a 
broader sample size that links the knot information with 
common measurements of lumber quality including grade, 
specifc gravity, and acoustic velocity to determine the 
specifc knot parameters (e.g., size, location, shape) that 
most negatively impact mechanical properties. The knot 
quantifcation technique could also be used to determine 
the impacts that silvicultural treatments, such as pruning 
and thinning intensity, have on the knot sizes in lumber. 
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