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ABSTRACT 

It has been common practice to assume that a 2-parameter Weibull probability distribution is 

suitable for modeling lumber strength properties. Previous work has demonstrated theoreti-

cally and empirically that the modulus of rupture (MOR) distribution of a visual grade of lumber 

or of lumber that has been binned by modulus of elasticity (MOE) is not a 2-parameter Weibull. 

Instead, the tails of the MOR distribution are thinned via pseudo-truncation. Simulations have 

established that fitting 2-parameter Weibulls to pseudo-truncated data via either full or cen-

sored data methods can yield poor estimates of probabilities of failure. In this article, we 

support the simulation results by analyzing large In-Grade type data sets and establishing that 

2-parameter Weibull fits yield inflated estimates of the probability of lumber failure when spec-

imens are subjected to loads near allowable properties. In this article, we also discuss the 

censored data or tail fitting methods permitted under ASTM D5457, Standard Specification 

for Computing Reference Resistance of Wood-Based Materials and Structural Connections 

for Load and Resistance Factor Design. 

Keywords 

2-parameter Weibull distribution, pseudo-truncated Weibull distribution, machine stress rated 

lumber, modulus of elasticity binned lumber, visually graded lumber, thinned tail, lumber property 

distribution, lumber reliability, censored data 2-parameter Weibull fits 

Introduction 

Verrill et al.1–4 established empirically and theoretically that visual and machine stress 

rated (MSR) grades of lumber are not distributed as 2-parameter Weibulls. Instead, they 
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have (at least to a first approximation) pseudo-truncated distributions. They also performed simulations that 

strongly suggested that both censored (see Section X2 of ASTM D5457-19, Standard Specification for 

Computing Reference Resistance of Wood-Based Materials and Structural Connections for Load and 

Resistance Factor Design5) and uncensored fits of 2-parameter Weibulls to pseudo-truncated data can lead to 

significant over- or underestimation of probabilities of failure when loads are near allowable properties. 

(Censored data techniques are also known among wood scientists as tail fitting and involve situations in which 

we have [or use] full information for only a subset of the data. Censored data techniques are 

discussed in many statistical textbooks that deal with reliability or lifetime estimation methods. See, for example, 

Lawless.6) 

Pseudo-truncation has a technical meaning. The concept, at least, of pseudo-truncation was recognized in an 

American Society of Civil Engineers pre-standard report.7 Section B3 of that standard notes that “an improved 

strength distribution can be obtained by … thinning the lower tail by sorting on a correlated variable.” For ex-

ample, if the full “mill run” bivariate modulus of elasticity–modulus of rupture (MOE–MOR) distribution were a 

bivariate Gaussian (normal)–Weibull, then truncating or binning on the basis of MOE values (as in MSR lumber) 

would lead to a pseudo-truncated MOR distribution. That is, because MOE and MOR are not perfectly correlated, 

truncating on the basis of lower and upper MOE limits does not lead to perfect truncation of the MOR distri-

bution, but it does, of course, lead to a MOR distribution whose tails are thinned. For the case in which the mill 

run joint MOE–MOR distribution is a bivariate Gaussian–Weibull, Verrill et al.1,4 derived the exact form of this 

pseudo-truncated Weibull distribution. (They obtained its probability density function.) They also showed that it 

cannot have tail behavior that matches that of a Weibull distribution. 

In this article, we analyze “In-Grade type” data sets to establish that modeling the MOR distributions of 

visual grades of lumber by 2-parameter Weibull distributions can lead to poor reliability estimates. In particular, 

when loads are close to the allowable properties calculated for those data sets, estimates of probabilities of failure 

will tend to be inflated. Our preceding simulation work—see Section 5.4 of Verrill et al.2 
—demonstrated that this 

positive bias in the mean tends to decrease with censoring, but also, as we would expect, censored estimates are 

more variable than correct pseudo-truncated estimates. Consequently, censored data techniques can, with ap-

preciable probability, yield failure probability estimates that are considerably too high and, again with appreciable 

probability, yield estimates that are considerably too low. 

The Data 

The data come from 19 of the original In-Grade data cells (species-size-grade-property combinations), 6 data cells 

from a 2011 Southern Pine Inspection Bureau (SPIB) repeat of the In-Grade testing program, and 1 data cell from 

a 2014 SPIB resource monitoring program study. The data cells are identified in columns 1–4 of  Table 1. The In-

Grade program and some of its results are discussed in Green and Evans,8 Green, Shelley, and Vokey,9 and Evans 

and Green10 Testing procedures for the In-Grade testing program are described in ASTM D4761, Standard Test 

Methods for Mechanical Properties of Lumber and Wood-Based Structural Materials,11 and the data were adjusted 

in accordance with ASTM D1990, Standard Practice for Establishing Allowable Properties for Visually-Graded 

Dimension Lumber from In-Grade Tests of Full-Size Specimens.12 The original SPIB resource monitoring program 

(1994–2010) is discussed in Kretschmann, Evans, and Brown.13 In recent years, the program has been modified to 

ensure conformity with the requirements in the most recent version of ASTM D1990 and to add action points that 

depend upon both strength and stiffness measurements. 

An Extension of An Earlier Analysis 

Verrill et al.3 presented a table that provided Cramér–von Mises (CVM) and Anderson–Darling (AD) goodness-

of-fit test p values for tests of the null hypotheses that 19 In-Grade data cell MOR distributions were 2-parameter 

Weibulls. In Table 1 of the current article, we extend this 2014 table to include the 2011 and 2014 SPIB data. To 
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TABLE 1 
p values for Cramér–Von Mises and Anderson–Darling goodness-of-fit tests of 2-parameter Weibull fits to In-Grade, 2011 SPIB 
In-Grade, and 2014 SPIB resource monitoring program data 

Goodness-of-fit p value 

Data Set Species Lumber Size Grade Sample Size CVM AD 

In-Grade DF 2 × 4 SS 414 .086 .033 

DF 2 × 8 SS 493 .472 .418 

DF 2 × 10 SS 414 .955 .771 

DF 2 × 4 2 386 .116 .066 

DF 2 × 8 2 1,964 .001 .001 

DF 2 × 10 2 388 .001 .001 

HF 2 × 4 SS 428 .026 .002 

HF 2 × 8 SS 375 .034 .033 

HF 2 × 10 SS 368 .062 .049 

HF 2 × 4 2 406 .004 .002 

HF 2 × 8 2 372 .009 .004 

HF 2 × 10 2 361 .010 .002 

SP 2 × 4 SS 413 .029 .010 

SP 2 × 8 SS 626 .028 .023 

SP 2 × 10 SS 413 .002 .001 

SP 2 × 4 2 413 .001 .001 

SP 2 × 6 2 413 .001 .001 

SP 2 × 8 2 1,367 .001 .001 

SP 2 × 10 2 412 .086 .113 

2011 SP 2 × 4 SS 420 .254 .158 

SP 2 × 8 SS 409 .316 .226 

SP 2 × 10 SS 410 .043 .023 

SP 2 × 4 2 408 .001 .001 

SP 2 × 8 2 420 .196 .146 

SP 2 × 10 2 420 .091 .060 

2014 SP 2 × 4 2 362 .807 .590 

Note: p values listed as 0.001 might actually be lower. 

perform the goodness-of-fit tests, we used an R14 goodness-of-fit function, WEDF.test (Krit15), that provides 

more precise estimates of the p values than the estimates provided in Verrill et al.3 This updated table continues 

to strongly suggest that visual grades of lumber are poorly fit by 2-parameter Weibulls. 

Verrill et al.3 also discussed Weibull probability plots of the data. In figure 1, we provide an example of such a 

plot. Verrill et al.3 noted that 16 of the 19 data sets available at that time led to probability plots that had the short 

or thinned left tails that one would expect from pseudo-truncated data. (That is, the points in the left tails of the 

probability plots tended to lie above y = x lines.) Twenty of the 26 data sets currently available to us display such a 

short left tail. To give readers an idea of how unlikely this would be if the data truly were 2-parameter Weibull, we 

performed 26 simulations. To do this, for each of the 26 data sets, we first obtained the maximum likelihood fit of 

a 2-parameter Weibull to the data. If the original data set contained n points, we then generated a data set of size n 

from the fitted 2-parameter Weibull distribution and plotted the corresponding Weibull probability plot. An 

example of such a plot is provided in figure 2. (Actual and generated probability plots for all 26 data sets 

can be viewed at http://www1.fpl.fs.fed.us/weib2.pp.html.) None of the 26 generated probability plots displayed 

shortened left tails. If the real MOR distributions are 2-parameter Weibulls, an approximate estimate of the 

probability of seeing all 20 of the observed short left tails among the original 26 probability plots and none among 

the probability plots associated with generated data or vice versa is 
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FIG. 1 

Weibull probability plot 

for the 2011 SPIB In-

Grade Southern Pine, 

2 × 4, No. 2 data. Ordered 

empirical data versus 

expected ordered data 

under a 2-parameter 

Weibull model. The 

straight line is the y = x 

line. 

FIG. 2 

Weibull probability plot 

of generated data. 

Ordered generated data 

versus expected ordered 

data under a 2-

parameter Weibull 

model. The generated 

data was generated from 

a 2-parameter Weibull 

maximum likelihood fit of 

the 2011 SPIB In-Grade 

Southern Pine, 2 × 4, 

No. 2 data. The straight 

line is the y = x line. O
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Note that this estimate ignores differences that may be due to species, lumber size, grade, and sample size 

differences, so it is merely suggestive rather than definitive. In fact, the data and intuition suggest that select 
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structural (SS) and No. 2 fits may behave differently—13 of 14 No. 2 probability plots display overly heavy pre-

dicted (thin observed) left tails, whereas only 7 of 12 SS plots do. This might be associated with the fact that SS 

grades, with potential physical right tail limits, are all left-skewed, whereas No. 2 grades that might contain No. 1 

and SS specimens are all right-skewed. (See the full, actual data, skewness (Skew) estimates in Table 2. The 

complete Table 2 can be found in Verrill et al.16 In this article, we only include that portion of Table 2 that 

covers Douglas Fir specimens.) 

Regardless, it is unlikely that the 26 MOR distributions are 2-parameter Weibulls. Of course, we 

essentially already knew this from the Cramér–von Mises and Anderson–Darling goodness-of-fit tests. 

However, this second analysis focuses our attention on the thinned observed left tails as one source of 

the lack-of-fit. 

So far, we have been seeking to conclude that 2-parameter Weibull fits may be statistically rejected. In the 

next section, we identify a practical reason for rejecting 2-parameter Weibull lumber strength models when mak-

ing reliability predictions. 

The New Analysis 

We used full and censored data maximum likelihood methods to fit 2-parameter Weibull distributions to each 

of the 26 data sets. A listing of the program that did the fitting (fit26.w2.cens.4.web.f) can be found at 

TABLE 2 
In-Grade Douglas Fir data 

Actual Data Generated Data 

Data Set 

In-Grade 

Data Cell 

DF2 × 4SS 

DF2 × 8SS 

DF2 × 10SS 

DF2 × 4_2 

DF2 × 8_2 

DF2 × 10_2 

Fraction of Data 

full 

20 % 

10 % 

5 % 

full 

20 % 

10 % 

5 % 

full 

20 % 

10 % 

5 % 

full 

20 % 

10 % 

5 % 

full 

20 % 

10 % 

5 % 

full 

20 % 

10 % 

5 % 

Shape 

4.62 

5.56 

6.07 

8.58 

3.75 

3.71 

4.24 

4.41 

3.99 

4.76 

5.72 

8.01 

3.02 

4.18 

4.50 

5.46 

2.60 

3.52 

4.46 

4.67 

2.44 

4.96 

5.59 

5.68 

Scale 

11.07 

10.56 

10.10 

8.46 

8.45 

8.57 

7.81 

7.50 

7.87 

7.28 

6.52 

5.48 

8.73 

7.47 

7.16 

6.21 

6.38 

5.44 

4.53 

4.40 

5.68 

3.80 

3.56 

3.50 

Skew 

−0.197 

−0.326 

−0.380 

−0.568 

−0.034 

−0.024 

−0.133 

−0.164 

−0.084 

−0.220 

−0.343 

−0.534 

0.163 

−0.121 

−0.178 

−0.314 

0.317 

0.021 

−0.172 

−0.205 

0.388 

−0.248 

−0.329 

−0.338 

Exc. Kurt 

−0.176 

−0.033 

0.046 

0.403 

−0.274 

−0.277 

−0.226 

−0.204 

−0.254 

−0.155 

−0.009 

0.328 

−0.272 

−0.233 

−0.192 

−0.048 

−0.181 

−0.287 

−0.197 

−0.169 

−0.113 

−0.126 

−0.028 

−0.015 

Shape 

4.65 

4.96 

6.08 

6.33 

3.88 

3.46 

3.62 

3.98 

4.00 

4.22 

4.03 

5.40 

3.21 

2.94 

3.35 

2.87 

2.62 

2.78 

2.84 

3.02 

2.37 

2.07 

2.10 

2.24 

Scale 

11.15 

10.74 

9.64 

9.42 

8.53 

9.03 

8.65 

7.83 

7.87 

7.64 

7.90 

6.27 

8.84 

9.46 

8.37 

10.10 

6.28 

6.01 

5.92 

5.44 

5.57 

6.06 

5.92 

5.34 

Skew 

−0.202 

−0.248 

−0.382 

−0.406 

−0.062 

0.034 

−0.003 

−0.083 

−0.088 

−0.129 

−0.094 

−0.306 

0.104 

0.188 

0.065 

0.212 

0.309 

0.245 

0.224 

0.162 

0.421 

0.583 

0.566 

0.489 

Exc. Kurt 

−0.172 

−0.126 

0.048 

0.087 

−0.264 

−0.288 

−0.282 

−0.254 

−0.252 

−0.228 

−0.249 

−0.058 

−0.287 

−0.263 

−0.289 

−0.252 

−0.188 

−0.233 

−0.245 

−0.273 

−0.076 

0.160 

0.129 

0.012 

Note: (1) Estimated shape and scale and corresponding skewness (Skew) and excess kurtosis (Exc. Kurt) values for 2-parameter Weibull fits (full, 
censored 20, censored 10, and censored 5) to six In-Grade Douglas Fir data sets, and 2) corresponding estimates for six data sets generated from the 
full sample 2-parameter Weibull fits to the six In-Grade Douglas Fir data sets. Corresponding results for Hem Fir and Southern Pine can be found in 
table 2 of Verrill et al.16 
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http://www1.fpl.fs.fed.us/weib2.prog.html. The program also obtained nonparametric estimates of the fifth 

percentiles of the 26 strength populations. 

For In-Grade type data cell j, the 2-parameter Weibull estimate of the probability that the strength of a 

member of the cell would fall below x was calculated as 

ˆ
ProbW,j = 1 − expð−ðx=λ̂jÞβj Þ 

where λ̂j and β̂j were the maximum likelihood estimates of the scale and shape parameters for cell j, respectively. 

These estimates are provided in Table 2 for full, censored 20, censored 10, and censored 5 fits. A censored 20 fit, 

for example, is one in which in our maximum likelihood fit, we make use of the bottom 20 % of the data and the 

number, Nj, of specimens sampled for cell j. (Nj corresponds to the n in equation X2.1 of ASTM D5457.5) 

The empirical estimate of this probability was 

Probemp,j = nj=Nj 

where nj was the number of specimens in cell j with MORs that fell below x, and Nj was the total number of 

specimens sampled for cell j. For the purposes of this article we will refer to these probabilities as “probabilities of 

failure.” We considered cases in which x equaled the nonparametric estimate of the fifth percentile of the dis-

tribution divided by 1.9, 2.1, and 2.3 (that is, for cases in which x was in the neighborhood of the allowable 

property). 

In Table 3 (corresponding to the divisor 2.1), ProbW,j × Nj values (the expected number of failures under full, 

censored 20, censored 10, and censored 5 2-parameter Weibull fits) are presented in columns 6–9, and nj (the 

observed number of failures) is presented in column 10. (Corresponding tables for divisors 1.9 and 2.3 can be 

found as tables 3 and 5 of Verrill et al.16) A listing of the program that was used to produce Table 3 can be found 

at http://www1.fpl.fs.fed.us/weib2.prog.html. 

When ProbW,j × Nj ≫ nj, the 2-parameter Weibull fit is likely to be overestimating the true probability of a 

failure. In some cases, the estimates based on a 2-parameter Weibull fit could be said to be highly inflated (con-

sider the 20.8, 5.4, 11.0, and 5.9 predictions in column 6 of Table 3). 

For the 2.1 divisor, the total number of cases in which specimen strengths actually lay below nonparametric 

fifth/2.1 values was 9. That is, the observed overall failure probability was 9/13,275 = 0.00068. For the full, cen-

sored 20, censored 10, and censored 5 2-parameter Weibull fits, the expected total numbers of failures were 83.8, 

29.8, 15.9, and 12.4. The 83.8 value is more than nine times the observed number of failures and yields an overall 

probability of failure estimate of 83.8/13,275 = 0.0063. 

This factor of nine suggests to us that a 2-parameter Weibull model for the MOR distribution of grades of 

lumber is a poor one. A 2-parameter Weibull model leads to inflated estimates of probabilities of failure when 

loads are near allowable properties. This result can be expected from the tail thinning due to pseudo-truncation 

that was explored in Verrill et al.1–4 (Of course, the inflation factor might actually vary with the cell. For example, 

if we restrict ourselves to the SS cells and uncensored fits, the ratio is 10.8/4 = 2.7, whereas if we restrict ourselves 

to the No. 2 cells and uncensored fits, the ratio is 73.0/5 = 14.6.) 

On the other hand, one could argue that despite the fact that Verrill et al.1,4 have established theoretically that 

pseudo-truncated strength distributions are unlikely to be 2-parameter Weibulls, and despite the fact that formal 

goodness-of-fit tests reject 2-parameter Weibull models for the strength distributions of grades of lumber, and 

despite the fact that 2-parameter Weibull fits to In-Grade data sets lead to overestimates of probabilities of failure 

for loads near allowable properties, one could—on a purely ad hoc basis—use censored data fits to 2-parameter 

Weibulls to predict probabilities of failure for loads near allowable properties. Such an argument might be made 

by someone who noted from Table 3 (and tables 3 and 5 of Verrill et al.16) that although censored data fits also 

lead to overestimates of the numbers of failures for loads near allowable properties, the overestimates appear to 
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TABLE 3 
Evidence from In-Grade, 2011 SPIB In-Grade, and 2014 SPIB resource monitoring program data that 2-parameter Weibull fits
(both uncensored and censored) lead, on average, to inflated estimates of failure probabilities when loads are at the 
nonparametric 5th/2.1 

Predicted # Failures 

No Censored Censored Censored Observed 

Data Set Species Lumber Size Grade Sample Size cens 20 10 5 # Failures 

In-Grade DF 2 × 4 SS 414 0.77 0.28 0.19 0.04 0 

DF 2 × 8 SS 493 1.60 1.61 1.05 0.98 1 

DF 2 × 10 SS 414 1.17 0.54 0.27 0.06 0 

DF 2 × 4 2 386 2.84 0.83 0.63 0.34 1 

DF 2 × 8 2 1,964 20.84 7.34 3.71 3.18 0 

DF 2 × 10 2 388 5.41 0.48 0.30 0.29 0 

HF 2 × 4 SS 428 1.10 0.26 0.35 0.33 1 

HF 2 × 8 SS 375 0.82 0.45 0.20 0.06 0 

HF 2 × 10 SS 368 0.91 0.48 0.10 0.02 0 

HF 2 × 4 2 406 4.17 0.93 0.20 0.35 0 

HF 2 × 8 2 372 3.52 1.11 0.32 0.19 0 

HF 2 × 10 2 361 3.80 0.41 0.26 0.22 0 

SP 2 × 4 SS 413 0.98 0.18 0.31 0.26 0 

SP 2 × 8 SS 626 1.11 0.80 1.25 1.13 1 

SP 2 × 10 SS 413 0.22 0.10 0.18 0.06 0 

SP 2 × 4 2 413 4.44 0.62 0.25 0.05 1 

SP 2 × 6 2 413 3.87 0.72 0.17 0.02 0 

SP 2 × 8 2 1,367 11.00 4.92 2.30 1.76 2 

SP 2 × 10 2 412 1.43 0.71 0.35 0.12 0 

2011 SP 2 × 4 SS 420 1.30 0.50 0.27 0.48 0 

SP 2 × 8 SS 409 0.38 0.89 0.45 0.45 0 

SP 2 × 10 SS 410 0.40 0.13 0.20 0.41 1 

SP 2 × 4 2 408 5.88 0.90 0.16 0.10 0 

SP 2 × 8 2 420 2.76 1.52 0.88 0.59 0 

SP 2 × 10 2 420 1.19 1.94 1.28 0.83 1 

2014 SP 2 × 4 2 362 1.88 1.15 0.24 0.05 0 

Total 83.80 29.79 15.85 12.39 9 

Inflation factor 9.3 3.3 1.8 1.4 

decline as the censoring increases. That is, the upward bias in the estimate of the number of failures appears to 

decrease as the censoring increases. 

Our short response is that the simulations of Verrill et al.2,3 established that although the bias in the estimate 

of the probability of failure declines as censoring increases, the variance of the estimate significantly increases (as 

one would expect from censored data estimates) with the result that, for any given data set, censored data es-

timates of failure probabilities will have good chances of being seriously inflated or seriously deflated (whereas 

correct pseudo-truncated estimates will not). 

In the next section, we provide a longer response to the suggestion that the strength distributions of visual or 

MSR grades of lumber can be well approximated by censored data fits of 2-parameter Weibull models. 

Censored Data 

ASTM D54575 permits 2-parameter Weibull distributions to be fit to data via censored data methods. Some 

scientists refer to this as tail fitting. Two permitted censored data fitting techniques (maximum likelihood 
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and method of least squares) are described in Section X2 of ASTM D5457. To produce a tail fit, one might 

explicitly use only the bottom 20 % of the data (the bottom nc data values in the notation of Section X2 of 

ASTM D5457) and the fact that 80 % of the data (ns of the data values in the notation of Section X2 of 

ASTM D5457) exceed the maximum of the bottom 20 %. 

In Section X1.1.3 of ASTM D5457, the authors of the standard write: “In addition, by permitting tail fitting of 

the data, it provides a way of fitting data in this important region that is superior to full-distribution types.” 

We would argue that this notion of the superiority of tail fitting is mistaken. This issue is relevant, important, 

and somewhat opaque. Thus, we feel that it is appropriate to address it in some detail here. 

Statisticians refer to tail fitting methods as censored data methods and know that they are derived for the case 

in which we know the probability density function associated with the bottom (in the notation of Section X2 of 

ASTM D5457) nc strength values in a sample, know those strength values, and further know that the remaining 

n–nc values in the sample are larger than the largest of the bottom nc values. We might encounter such data if we 

applied a maximum load to all of the specimens in a data set (rather than loading all of the specimens to failure). 

We might also encounter such a data set if we chose to simply record strengths larger than the bottom nc strengths 

as “larger than the bottom nc strengths” (as is contemplated in Section X2 of ASTM D5457). 

Among statisticians, it is a well-known fact that if our probability models are correct, we obtain better (lower 

mean squared error) parameter estimates and thus, in reliability situations, better estimates of the probability of 

failure (anywhere, including the left tail) by performing full data fits rather than censored data fits. 

That is, if we have, for example, 400 random draws from a distribution, we obtain better estimates of the 

parameters of this distribution (and thus, estimates of the percentiles of this distribution) by using explicit knowl-

edge of all 400 data values than by using just the explicit bottom 80 values and knowledge that the remaining 320 

values exceed the maximum of the 80 values (the censored data approach covered in Section X2 of D5457). For 

samples of size 400, we performed simulations that confirmed that when the full underlying distribution is a 

2-parameter Weibull, we do better with full data analyses than with censored data analyses. Results from these 

simulations are reported in table 6 of Verrill et al.16 A listing of the Fortran computer program that was used to 

perform the simulations can be found at http://www1.fpl.fs.fed.us/weib2.prog.html. 

Thus, there is no theoretical justification for performing a censored data fit if we believe that our model (e.g., 

a 2-parameter Weibull) holds for the whole population. So, we must assume that an advocate of censored data fits 

believes that a 2-parameter Weibull does not fit the whole population. What do they believe? We assume that they 

are thinking one of three things: 

1. The population is a mixture—for example, 45 % of MOR values are drawn from one normal (or Weibull 
or lognormal or …) population, and 55 % of the MOR values are drawn from a different normal (or 
Weibull or lognormal or …) population. (A pseudo-truncated version of such a model is considered 
in Verrill et al.17) 

2. The population is a “chimera”—for example, for data below xc, the population’s probability density func-
tion at x is the 2-parameter Weibull density γββxβ −1exp(−(γx)β), and for x > xc, it is something else. 
Actually, we assume that there are few wood scientists who would truly believe in such a creature. 
(What would be the mechanism that yielded the chimera?) But we mention it for completeness. 

3. The advocates of censored data fits have no proposed theoretical model for the distribution of the 
MOR population. They simply believe that, for practical purposes, they can perform a censored data 
2-parameter Weibull fit on some portion of the left tail of the data and get fairly decent predictions 
of, say, the bottom 10–20 % of the data. 

The censored data methods described in Section X2 of ASTM D54575 are not designed to handle Case 1. In 

the notation of Section X2 of ASTM D5457, the censored data techniques make use of the lowest nc values in the 

data set and the number n in the full random draw from the population. In the mixture case, you don’t know the n 

associated with the leftmost subpopulation. You know N, the total number of observations drawn from the vari-

ous populations in the mixture. If you had done a mixture analysis, you could estimate n as p̂ × N where p̂ was 
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your estimate of the proportion of the leftmost subpopulation in the mixture (even then, you would have to 

assume that the bottom nc observations came solely from this leftmost population in the mixture). (Of course, 

if you did a complete pseudo-truncated mixed analysis as was done in Verrill et al.,17 you could calculate the 

complete resulting probability density function and predict probabilities of failure at various loads.) 

In the chimera case, if you knew that the underlying probability density function was a 2-parameter Weibull 

for x less than some xc, then you could, indeed, perform a censored data fit based on the xi’ s that lay below xc and 

the total number of observations in the sample. However, as we note previously, we have seen no mechanism 

advanced for a chimera, and we assume that wood scientists have never actually estimated cutoffs between the 

various portions of a chimera or actually believe in their existence. 

Instead, we assume that proponents of modeling MOR distributions with censored data estimates of 

2-parameter Weibulls know that poor fits and probability plots are obtained when full data 2-parameter 

Weibull fits are made, and they see that censored data fits yield left tail probability plots in which observed 

and predicted order statistics more closely align. They then argue that for reliability purposes, we are concerned 

about the left tail (leaving this loosely defined), not the whole distribution, so we need only get a good fit in some 

portion of the left tail. That is, they only hope to use a censored data 2-parameter Weibull fit as a good inter-

polator for some portion (bottom 10 %? bottom 20 %?) of the left tail data. 

The problem with this approach is that if we do not have a good mechanistic model for the generation of the 

data (for example, pseudo-truncation of a bivariate mill run distribution if we focus on MOE–MOR data or visual 

grade–MOR data, or pseudo-truncation of a trivariate mill run distribution if we focus on MOE–visual grade– 

MOR data), but instead, simply fit an interpolator to the left tail of a visual grade data set, we run into the weak-

ness associated with all empirical models—they tend to perform poorly when we attempt to apply them beyond 

the data used to fit them. Thus, if we are interested in estimates of probabilities of failure on the order of 0.001 or 

even 0.0001, we might not do well if we base our predictions on interpolative fits to the bottom 10 or 20 % of a 

sample of size 400, even if the bottom 10 or 20 % of the observed and predicted data align well along the y = x line 

in a probability plot. (Of course, we also won’t do well if the load can fall above the 5 or 10 or 20 % of the data fully 

included in the MOR censored data fit, and the form of the appropriate probability density function in this area 

differs significantly from the 2-parameter Weibull estimated from the censored data fit.) 

In support of this claim, we first note that, as stated in Section 4, Verrill et al.2,3 performed simulations that 

established that using censored data 2-parameter Weibull methods on pseudo-truncated Weibull data can often 

lead to probability of failure estimates that are either well above or well below true values, and that this problem is 

much reduced when estimates are based on the correct pseudo-truncated model. A censored data 2-parameter 

Weibull approach might yield probability plots that look better than those produced from a full data 2-parameter 

Weibull approach, but the censored data 2-parameter Weibull approach still performs much more poorly than a 

correct pseudo-truncated Weibull approach. Censored data 2-parameter Weibull fits to pseudo-truncated 

Weibull data appear to lead to decreases in the biases of probability of failure estimates (compared with non-

censored data 2-parameter Weibull fits) but appear to lead to increases in their variances. In short, increases in 

censoring lead to interpolation overfitting caused not by an increase in the number of parameters in the model, 

but by decreases in the range and effective number of data points. Again, for simulation details, see Section 5.4 of 

Verrill et al.2 

Second, we note that if there really were an unvarying 2-parameter Weibull that fit low-tail data, then (de-

pending upon where the low-tail is supposed to begin) censored data maximum likelihood techniques would 

obtain similar (because maximum likelihood methods are asymptotically unbiased regardless of the degree of 

censoring) estimates whether we fit the bottom 20, bottom 10, or bottom 5 % of the data (unless, of course, 

the low-tail doesn’t begin until we are at or below some or all of these percentiles). However, as displayed 

in columns 4 and 5 of Table 2 (the full Table 2 can be found in Verrill et al.16), for 12 of the 14 No. 2 In-

Grade type data sets (and 4 of the 12 SS data sets), as censoring goes from none, to 20th percentile, to 10th 

percentile, to 5th percentile, the shape parameter obtained from a 2-parameter Weibull censored data fit mono-

tonically increases, and the scale parameter monotonically decreases. (A listing of the Fortran program that 
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produced the fits can be obtained at http://www1.fpl.fs.fed.us/weib2.prog.html.) This is not what should occur 

theoretically or what does occur empirically when we use censored data 2-parameter Weibull methods to fit 

generated 2-parameter Weibulls—see columns 8 and 9 of Table 2 and see the discussion of table 3 in 

Section 5.2 of Verrill et al.2 However, it is what we expect when we incorrectly use censored data 2-parameter 

Weibull methods to fit pseudo-truncated Weibull data. See the discussion of table 5 in Section 5.3 of Verrill et al.2 

All of this suggests that low-tail In-Grade type strength data is not well modeled by the left tail of a 2-parameter 

Weibull, despite, for example, 2-parameter Weibull probability plots that might appear more nearly linear when 

they are based on censored data fits and only include low-tail data. 

The Fortran program that produced Table 2 also produced plots that make our point visually. The full set of 

plots is available at http://www1.fpl.fs.fed.us/weib2.156plots.pdf. We attach six of these plots as figures 3–8. 

In figure 3, we plot a histogram of the 413 southern pine, 2 × 6, No. 2 In-Grade MOR values. We overlay this 

histogram with the estimated probability density function from a 2-parameter Weibull maximum likelihood 

uncensored fit to the In-Grade MOR values and with the estimated probability density functions from censored 

20, censored 10, and censored 5 maximum likelihood fits to the In-Grade MOR values. This plot makes clear the 

systematic change in the fits as the censoring increases. In contrast, in figure 4, we plot a histogram of 413 2-

parameter Weibull values generated from the full data 2-parameter Weibull fit of the 413 southern pine, 2 × 6, 

No. 2 In-Grade MOR values. We overlay this histogram with the estimated probability density function from a 2-

parameter Weibull maximum likelihood uncensored fit to the generated data, and with the estimated probability 

density functions from censored 20, censored 10, and censored 5 maximum likelihood fits to the generated data. 

These fits (to generated data that we know to be 2-parameter Weibull) do not display the systematic changes with 

increased censoring displayed by the corresponding fits to In-Grade MOR values. 

The dependency of left tail predictions on the degree of censoring in our fitting procedures is further illus-

trated by figures 5–8. In these figures we plot ordered data versus predicted ordered data. That is, these figures 

display 2-parameter Weibull probability plots. They correspond, respectively, to full, censored 20, censored 10, 

and censored 5 2-parameter Weibull fits of the southern pine, 2x6, No. 2 In-Grade data. The horizontal lines in 

these plots mark the 20th, 10th, and 5th percentiles of the ordered data. In figures 6–8 (corresponding to 
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FIG. 4 
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censored 20, censored 10, and censored 5 fits), the fits sharply deviate from the y = x lines at or shortly above the 

data that are explicitly used in the fit. That is, 5 % fits don’t do a good job of predicting 10 % data, and 10 % fits 

don’t do a good job of predicting 20 % data. Locally good interpolants don’t continue to perform well beyond the 

data used to produce the interpolants. 

We admit that we are presenting plots from a case that does an especially good job of making our 

point visually. However, the plots in the 25 other cases make similar points. (All 156 plots can be viewed at 
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FIG. 6 
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http://www1.fpl.fs.fed.us/weib2.156plots.pdf.) In fact, for 7 of the 14 No. 2–censored 5 probability plots and 4 of 

the 12 SS–censored 5 probability plots, there is a sharp bend at the 5th percentile of the data. For an additional 4 of 

the No. 2–censored 5 probability plots and an additional 4 of the SS–censored 5 probability plots, this sharp bend 

is slightly higher (between the 5th and 10th percentiles of the data). 

Given the observed poor predictions above the interpolated data, we see no reason to trust predictions for the 

important region below the interpolated data. As stated previously, this empirical result is strongly bolstered by 

the simulation results reported in Section 5.4 of Verrill et al.2 that establish the superiority of theoretically correct 

pseudo-truncated fits to theoretically incorrect censored data 2-parameter Weibull fits. (Of course, if we do fits to 
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FIG. 8 
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sufficiently large data sets, relevant percentiles will lie within the interpolation region, and this will improve the 

performance of interpolator-based percentile predictions.) 

Load Distributions Rather than Fixed Loads 

In “The New Analysis,” we evaluated estimated and empirical probabilities of failure at fixed loads (at approxi-

mate allowable properties). In this section, we consider variable loads. We discuss calculations in which peak load 

distributions are modeled as lognormals. Such a model was suggested to us by a reviewer of Verrill et al.2 The 

reviewer of Verrill et al.2 suggested that we model the load distribution as a lognormal with coefficient of variation 

0.3 that exceeds the allowable property with probability 0.02. 

In our calculations, the load was modeled as a lognormal with coefficient of variation 0.3, and we considered 

the cases in which the load exceeded the approximate allowable property (nonparametric estimate of the 5th 

percentile divided by 2.1) with probabilities 0.01, 0.02, 0.05, 0.10, and 0.2. The mathematical details of the cal-

culations are provided in the Appendix. The results appear in Table 4. (A listing of the program that was used to 

produce Table 4 can be found at http://www1.fpl.fs.fed.us/weib2.prog.html.) 

The results presented in Table 4 suggest that 2-parameter Weibull fits to strength distributions can also yield 

inadequate estimates of failure probabilities when we incorporate load distributions into our calculations. For 

example, for load exceedance probabilities of 0.01 (the probability that the lognormal load exceeds the [approxi-

mate] allowable property is 0.01), and censored 20, censored 10, and censored 5 fits, the ratios of 2-parameter 

Weibull–based estimates of the number of expected failures to data-based estimates of the number of expected 

failures are, respectively, 4.1/0.54 = 7.6, 1.7/0.54 = 2.2, and 1.2/0.54 = 2.2. (Admittedly, these values do decline as 

the exceedance probability goes up. For example, for an exceedance probability of 0.02 rather than 0.01, the 

corresponding values are 5.8, 2.6, and 1.9.) 

We note that the results suggest that failure rate biases decline as censoring increases, but we continue to 

emphasize that this is an improvement in interpolation rather than modeling and that simulations (again, see 

Section 5.4 of Verrill et al.2) suggest that the apparent reduction in the bias of the estimate of failure rates given 

censored data fits is accompanied by an increase in the variance of the estimate of failure rates and thus an 

increased chance of serious underestimates of failure rates. 
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TABLE 4 
Evidence that Weibull fits yield inadequate estimates of failure probabilities even when we incorporate load distributions and
censoring into the calculations 

Data Used in Probability that the Load is Above the Data-based Expected Weibull Fit–based Expected Column 4 Divided by 

Weibull Fit Allowable Property Failures Failures Column 3 

All 0.01 0.54 17.1 31.7 

0.02 0.96 21.4 22.3 

0.05 2.16 30.1 13.9 

0.10 4.27 41.0 9.6 

0.20 9.39 59.8 6.4 

Bottom 20 % 0.01 0.54 4.1 7.6 

0.02 0.96 5.6 5.8 

0.05 2.16 8.9 4.1 

0.10 4.27 13.5 3.2 

0.20 9.39 22.4 2.4 

Bottom 10 % 0.01 0.54 1.7 3.1 

0.02 0.96 2.5 2.6 

0.05 2.16 4.3 2.0 

0.10 4.27 7.2 1.7 

0.20 9.39 13.4 1.4 

Bottom 5 % 0.01 0.54 1.2 2.2 

0.02 0.96 1.8 1.9 

0.05 2.16 3.3 1.5 

0.10 4.27 5.7 1.3 

0.20 9.39 11.2 1.2 

Summary 

Past theoretical work (Verrill et al.1,4) established that if a mill run MOE–MOR population has a bivariate normal-

Weibull distribution, then the MOR distributions of visual grade or MSR subpopulations will be pseudo-

truncated Weibulls (with thinned tails). Past empirical work (Verrill et al.2,3) and work reported in “An 

Extension of An Earlier Analysis” of the current article confirm that MOR distributions of visual grades of 

lumber are not 2-parameter Weibulls and do have thinned tails. Past simulation work (Verrill et al.2,3) suggested 

that 2-parameter Weibull fits to pseudo-truncated Weibull data led to inflated estimates of failure when loads are 

near allowable properties. Empirical work reported in “The New Analysis” of the current article suggests that 

modeling visual grade–MOR distributions with 2-parameter Weibulls can lead to estimates of failure probabilities 

when loads are near allowable properties that are inflated by a factor of 9 (at least for No. 2 lumber and 

uncensored fits). 

Past simulation work (Verrill et al.2,3) and work reported in “Censored Data” and “Load Distributions Rather 

than Fixed Loads” of the current article suggest that, as one would expect, censored data 2-parameter Weibull fits 

can also perform poorly when applied to pseudo-truncated data. In particular, they can lead to highly variable 

estimates of probabilities of failure and thus (for different data sets) to both serious overestimates and serious 

underestimates of probabilities of failure. 

Given these theoretical, empirical, and simulation results, we believe that additional full mill run data sets 

(see, for example, Owens et al.18,19) need to be obtained, and additional pseudo-truncated distributions (see, for 

example, Verrill et al.17) need to be developed in an attempt to identify alternatives to the 2-parameter Weibull as 

a model for visual and MSR strength distributions. We are engaged in such work. 

However, given the fact that actual distributions may be complicated mixtures of base distributions that vary 

from mill to mill, region to region, time to time, size to size, and species to species, it may be that no satisfactory 
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theoretical form(s) can be identified to form the basis of sophisticated reliability models that could yield improved 

design values. 

We suspect that ultimately, if reliability engineers want to obtain accurate reliability estimates, they will need 

to develop detailed computer models that yield real-time, in-line estimates of lumber strength based on mea-

surements of stiffness, specific gravity, knot size, and location, slope of grain, and other strength predictors. 

Appendix—Calculations for Table 4 

The calculations that yielded Table 4 were performed via a Fortran program that can be found at http://www1.fpl. 

fs.fed.us/weib2.prog.html. In this Appendix, we describe these calculations. None of the mathematics is novel. We 

describe it in some detail simply because this permits easy checking of our work. Some of the description rep-

licates material found in the Appendix to Verrill et al.2 

OBTAINING THE PARAMETERS OF THE LOGNORMAL LOAD DISTRIBUTION 

By definition, a random variable X is distributed as a lognormal(μ,σ2) if ln(X) is distributed as a normal(μ,σ2). 

Thus, characterizing the lognormal is equivalent to determining the two parameters μ and σ. For a lognormal 

distribution, it can be shown that the coefficient of variation, CV, is given by 

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
CV = expðσ2Þ − 1 

or 

lnð1 + CV2Þ = σ2 (A.1) 

Thus, for lognormals, the parameter σ can be determined from a knowledge of the (alternative parameter) 

CV. In the calculations that produced Table 4, CV=  0.3 so 

σ2 = lnð1.09Þ ≈ 0.0862 (A.2) 

Next, we show that we can obtain μi for the ith of the 26 In-Grade type data sets from σ and the probability, q, 

that the lognormal lies above the approximate allowable property, ai (the nonparametric estimate of the 5th 

percentile divided by 2.1 of the ith In-Grade type data set). In Table 4, the q values appear in column 2. 

We have 

ProbðLNðμi, σ2Þ ≤ aiÞ = 1 − q 

or 

ProbðNðμi, σ2Þ ≤ lnðaiÞÞ = 1 − q 

or 

� �
lnðaiÞ − μiProb Nð0, 1Þ ≤ = 1 − q

σ 

or 

lnðaiÞ − μi = Φ−1ð1 − qÞ 
σ 

where Φ denotes the N(0,1) cumulative distribution function. Thus, 
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μi = lnðaiÞ − σ × Φ−1ð1 − qÞ (A.3) 

So, given the CV of the lognormal load distribution (we assume it to be 0.3) and the probability, q (0.01, 0.02, 

0.05, 0.1, or 0.2 in our calculations), that the lognormal load distribution exceeds the approximate allowable 

property, ai, we can use equations (A.1) and (A.3) to calculate the mean and variance, μi and σ2, needed to 

characterize the lognormal load distribution appropriate for data set, i, and exceedance probability, q. 

OBTAINING COLUMNS THREE AND FOUR OF TABLE 4 

Let 

1 1 1 
f LN,iðyÞ = pffiffiffiffiffi × expð−ððlnðyÞ − μiÞ=σÞ2=2Þ × × 

2 σ y 
(A.4)

denote the lognormal probability density function appropriate for data set i, a CV equal to 0.3, and exceedance 

probability q (q ∈ {0.01,0.02,0.05,0.10,0.20}). Then, column 3 in Table 4 contains values of the form 

� ��Z26 26 Ni 

Ni × ProbðLoadi > StrengthiÞ ≈ Ni × f LN,iðyÞdy Ni 
i=1 i=1 j=1 wij 

X X X ∞ 
(A.5) 

where wij is the jth observed strength value for In-Grade type data set i (i ∈ {1,…,26}) and Ni is the number of 

lumber specimens in data set i. 

Here 

� ��ZNi X ∞ 
f LN,iðyÞdy Ni 

j=1 wij 

is a data-based estimate of the probability that the lognormal load would be greater than the strength in the ith of 

the 26 cases. 

Column 4 in Table 4 contains 

Z Z26 X ∞ x 
β̂i ˆ ˆNi f LN,iðxÞ γ̂i β̂iw

βi−1 expð−ðγ̂iwÞβi Þdw dx 
i=1 0 0 

(A.6) 

where β̂i and γ̂i are the maximum likelihood estimates of the shape parameter and the inverse of the scale param-

eter for the ith of the 26 In-Grade type data sets and the corresponding censoring level. (The censoring level is 

indicated in column 1 of the table). 

Here 

Z Z
∞ x 

β̂i ˆ ˆf LN,iðxÞ γ̂i β̂iw
βi−1 expð−ðγ̂iwÞβi Þdw dx 

0 0 

is a theoretical estimate of the probability that the lognormal load would be greater than the strength in the ith of 

the 26 cases under the assumption (essentially) of a 2-parameter Weibull left tail of the strength distribution (or at 

least of a 2-parameter Weibull strength distribution in the region of practical overlap of the load and strength 

distributions). 
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