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Abstract: To maximize utilization of our forest resources, detailed knowledge of wood property 
variation and the impacts this has on end-product performance is required at multiple scales (within 
and among trees, regionally). As many wood properties are difficult and time-consuming to measure 
our knowledge regarding their variation is often inadequate as is our understanding of their responses 
to genetic and silvicultural manipulation. The emergence of many non-destructive evaluation (NDE) 
methodologies offers the potential to greatly enhance our understanding of the forest resource; 
however, it is critical to recognize that any technique has its limitations and it is important to select 
the appropriate technique for a given application. In this review, we will discuss the following 
technologies for assessing wood properties both in the feld: acoustics, Pilodyn, Resistograph 
and Rigidimeter and the lab: computer tomography (CT) scanning, DiscBot, near infrared (NIR) 
spectroscopy, radial sample acoustics and SilviScan. We will discuss these techniques, explore their 
utilization, and list applications that best suit each methodology. As an end goal, NDE technologies 
will help researchers worldwide characterize wood properties, develop accurate models for prediction, 
and utilize feld equipment that can validate the predictions. The continued advancement of NDE 
technologies will also allow researchers to better understand the impact on wood properties on 
product performance. 

Keywords: acoustics; computer tomography (CT) scanning; DiscBot; near infrared (NIR) spectroscopy; 
nondestructive evaluation (NDE); Pilodyn; Rigidimeter; Resistograph; SilviScan; wood and fber 
quality; X-ray densitometry; X-ray diffraction 

1. Introduction 

Non-destructive evaluation (NDE) is defned by Pellerin and Ross [1] as: “The science of identifying 
the physical and mechanical properties of a piece of material without altering its end-use capabilities 
and then using this information to make decisions regarding appropriate applications”. NDE is a 

Forests 2019, 10, 728; doi:10.3390/f10090728 www.mdpi.com/journal/forests 

http://www.mdpi.com/journal/forests
http://www.mdpi.com
https://orcid.org/0000-0001-8245-9306
https://orcid.org/0000-0003-2939-5408
http://www.mdpi.com/1999-4907/10/9/728?type=check_update&version=1
http://dx.doi.org/10.3390/f10090728
http://www.mdpi.com/journal/forests
mailto:laurence.schimleck@oregonstate.edu


Forests 2019, 10, 728 2 of 50 

critical feature of numerous industries and has a long history of ensuring product quality control 
and safety. Broadly speaking, industrial NDE is a carefully controlled practice involving certifed 
specialists [2] who have received training in the proper use of various standard techniques employed 
to serve the needs of a diverse client base. Owing to importance of these tests, e.g., X-raying a new 
pipe weld to ensure quality and avoid failure, approval of a NDE testing agency is required prior to 
use, or to continue use. 

Wood product NDE research commenced in the 1960s and was largely focused on lumber with 
the frst wood NDE symposium held in Madison, WI in 1964 (the sequence of NDE meetings is 
ongoing with the 21st scheduled for September 2019 in Freiburg, Germany). Many different techniques 
were covered at the frst symposium (densitometry/radiography, electrical capacitance and resistance, 
microwave, nuclear magnetic resonance, stress wave and ultrasonics). The application of some of 
these initial techniques, for example Metriguard’s stress wave tools for lumber and veneer stiffness 
(modulus of elasticity, MOE) assessment, have had commercial success. 

For various reasons many of the techniques that can be applied to wood products in an industrial or 
research setting are unsuitable for feld use. For this paper, we consider a method to be nondestructive 
if it is applied to either a standing tree or a felled log, or if the method is used on a radial sample 
and captures pith to bark measurements to quantify variation in wood properties due to cambial age. 
The radial sample can be cut from either an increment core [3,4] or a disc which can be obtained from 
the ends of logs after felling. Other techniques that require processing (grinding, microtoming) a radial 
strip into smaller sections followed by destructive analysis are not described in detail. We acknowledge 
that some of these methods are still relatively rapid in comparison to traditional methods, and thus a 
selection of the techniques will be discussed following a description of NDE tools. 

NDE in a forestry context is considered attractive for various reasons and the following list, which 
is by no means complete, serves to demonstrate why the use of NDE tools has grown rapidly in the 
last 20–25 years: 

• Protection of investment. 
• Potential to reduce costs. 
• Potential for feld-use. 
• Real-time collection of data. 
• Minimize sample collection. 
• Ease of measurement. 
• Speed of data collection. 
• Ability to identify most suitable application. 
• Ability to reduce variability within product classes. 

Tools that are robust, easy to use in the feld, and rapidly provide data (measurement time in 
minutes) have emerged on the market in response to demand from the forestry sector. Typically used 
for resource assessment or in tree improvement programs, these tools provide measurements of a 
parameter, e.g., acoustic velocity, that has been shown to relate directly to an important wood property 
(MOE). In parallel, lab-based NDE tools providing accurate measurements of specifc wood properties 
have been developed complementing feld-based tools. The following list contains a summary of tools 
commonly used to assess wood properties of trees. It should be noted that some of these tools utilize a 
number of different techniques to measure properties: 

• Acoustics—standing tree/log. 
• Pilodyn. 
• Resistograph. 
• Rigidimeter. 
• SilviScan. 
• Near infrared (NIR) spectroscopy. 
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• Radial sample acoustics. 
• DiscBot. 
• Computer tomography (CT) scanning. 

The frst four are designed for use in the feld. The remaining tools are all lab-based, while near 
infrared (NIR) spectroscopy has potential for feld-use. Field tools provide predictions of density 
(Pilodyn, Resistograph) and MOE (acoustics, Rigidimeter), owing to the importance of these wood 
properties in determining end-product performance. NIR spectroscopy can be used to estimate a 
number of different properties provided a suitable calibration exists, while SilviScan and DiscBot 
utilize a number of different measurement methods to determine multiple properties. It is important 
to recognize that the use of some NDE tools is presently quite advanced, while for others development 
and application related research is ongoing. 

Owing to the wide range of NDE options available and reasons for forest sampling, it can 
be difficult to determine which approach to employ for a given project. In this review we seek 
to draw together the diverse opinions of several experts to identify forestry related applications 
where a technique is particularly well or uniquely suited, and how to best apply the methodology. 
For consistency, the following list of objectives, directly relevant to forest practices such as tree 
improvement, and forest and silvicultural management, was selected. While not complete, it largely 
encompasses the various uses to which NDE has been applied, including: 

• Screening families and clones. 
• Estimation of genetic parameters. 
• Correlation with genetic markers. 
• Forest inventory. 
• Monitoring silvicultural and environmental effects. 
• Within-tree variation. 
• Correlation with product properties. 
• Dendrochronology. 

2. Forest Sampling 

An important component of wood and fber quality analysis, whether by NDE tool or traditional 
method, is the sampling efforts themselves, however little attention has been given in the literature 
to sampling strategies specifc to wood and fber quality. Arguably, the most comprehensive text is 
Downes et al. [5] focused on sampling eucalypts. Typically, forest sampling is a trade-off between 
capturing enough information to accurately quantify the mean and variability in a particular wood 
property while balancing the costs associated with the sampling and subsequent analysis. Raymond [6] 
found in radiata pine (Pinus radiata D. Don) grown in New Zealand that sampling more than 10 trees per 
stand resulted in marginally smaller standard errors for the mean estimate for a stand. Jordan et al. [7], 
working with loblolly pine (Pinus taeda L.), recommended sampling 10–15 trees/site, and concluded 
that to capture the mean value with an acceptable standard error for a physiographic region, emphasis 
should be placed on sampling more sites within a region, rather than more trees within an individual 
site. Typically, plots are established with diameters being taken for each tree in the plot, and from a 
subset of trees the heights are measured. The form for each tree is evaluated to determine the potential 
of the trees to make specifc products (e.g., sawtimber or pulp). After collecting diameter information 
and evaluating tree form, selection of sample trees for wood property analysis typically occurs across 
the diameter distribution with most studies focusing on defect free trees to minimize the probability 
of sampling trees with high incidence of reaction wood [8,9]. These recommendations are targeted 
towards quantifying regional variation and thus capturing the variability of the environmental impacts 
on wood properties across a growing region, but other objectives likely require different sampling 
strategies. For example, when attempting to determine silvicultural treatment effects, sampling 
more trees per treatment would likely be appropriate than the recommended 10–15 trees/site to have 
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enough statistical power to determine signifcant differences. If the intent is to quantify the wood 
properties for an individual stand to determine end product value or suitability of a particular stand 
to make a particular product, then sampling both defect-free and defect-containing trees is likely 
appropriate. Modeling efforts have typically excluded samples with compression wood as radial 
patterns are very different from normal wood [10]. Modeling the formation of compression wood 
by silvicultural treatment has been given little attention in the literature but is an important area of 
investigation. Measurement error should also infuence sampling strategies, whereby instruments with 
larger measurement errors should be offset with additional sample collection. For genetic assessment 
of very young trees, inducing reaction wood formation by tilting trees has been employed in order to 
be certain of the wood type (compression or tension wood, opposite wood) being measured, because 
young stems rarely grow straight [11–14]. 

Collecting cores from trees requires care to ensure that the core contains the pith, as well as having 
the grain run perpendicular to the length of the core. Typically, cores are collected from bark-to-bark, 
but for large trees cores can be collected from pith-to-bark with a section of the wood past the pith 
sampled to prevent core breakage at the pith. As wood is an orthotropic material attention to grain 
orientation at all times is critical, for example, not having the grain run perpendicular to the length of the 
core will result in erroneous readings for some instruments. For example, X-ray densitometry systems 
that do not utilize image-based camera detectors will sample both earlywood (EW) and latewood 
(LW) during EW to LW and LW to EW transition periods when the grain does not run perpendicular, 
which will interfere with the measurement of each ring component. For radial ultrasonic systems, 
velocity readings will decrease as grain becomes less perpendicular because longitudinal velocity 
(3000 to 6000 m s−1) is much greater than either radial or tangential velocity (1000 to 1700 m s−1) [15]. 
Cores that do not contain the pith results in challenges associated with reconstructing growth rings. 
Dendrochronology studies will estimate the pith location based on the ring curvature using either a 
ruler or in software [16,17]. Additionally, growth rings should be straight across the sample, but this is 
difficult even in a “perfect” sample due to curvature in the growth rings near the pith. The SilviScan 
system was designed to minimize ring curvature problems by rotating the sample at each measurement 
point. Note that sample rotation does not fx longitudinal grain deviation errors. Following the 
collection of cores from standing trees, recommended best practice is to leave the hole in the tree 
unplugged, thus allowing the tree to heal itself rather than introducing a foreign object or chemical 
into the tree [4,18]. 

3. Sample Preparation 

Most instruments that capture radial variation require careful sample preparation. Following 
collection, samples should either be immediately dried to ambient moisture content conditions using a 
gentle drying schedule, or frozen to prevent stain by fungi. The wood of some tree species such as 
eucalypts is very susceptible to checking and thus for certain analyses samples should be soaked in 
ethanol which prevents the collapse of cells during drying by having the ethanol substitute with the 
water in the wood [5]. 

Processing dried samples into radial strips from cores or disk samples is usually done by gluing 
samples onto holders on either one or two sides, and then passing the sample through a twin-blade 
saw. As pith-to-bark samples are fragile, particularly those obtained from 5 mm cores, gluing samples 
in holders helps to avoid breakages. When preparing samples for densitometry, the saw blades are 
commonly spaced 2 mm apart. The face exposed is a function of the instrument and user preference. 
For example, if capturing only X-ray densitometry information from the sample, the transverse face 
is typically exposed. SilviScan (see latter section for a more detailed description of this instrument) 
will expose the radial face to the densitometry beam to enable the same sample to be used for X-ray 
diffraction, with the top (cross section) of the sample being used for image analysis. SilviScan samples 
have dimensions of 2 mm in the tangential direction and 7 mm in the longitudinal direction enabling 
imaging on the transverse face of the sample and calibration of the X-ray densitometery measurements 
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with the gravimetric density of the sample. Making multiple measurements on the same samples 
offers signifcant advantages (SilviScan), although this is not always possible for all laboratories given 
instrument limitations or measurement techniques. For example, assessing acoustic velocity in samples 
requires a taller sample than a typical 2 mm tall densitometer sample. The University of Georgia 
wood and fber quality lab uses a quad-blade saw to cut book matched samples from disks for radial 
assessment of acoustic velocity, X-ray densitometry, and tracheid properties. The setup requires a 
relatively tall longitudinal sample (approximately 25 mm) and thus cores cannot be processed this way. 
The Scion DiscBot system was designed to capture all measurements on the same disc and thus offers 
the distinct advantage of capturing both radial and circumferential variation in wood properties. With 
all systems that employ saws it is critical that the saw blades be sharp as any tear out will have a large 
impact on the accuracy of the densitometry readings and will affect the surface coupling between the 
transducers and the sample when measuring ultrasonic velocity. 

To eliminate the effects of extractives on wood density measurements, removal is typically done 
using some type of Soxhlet extraction system or through repeated soakings with the solvent being 
exchanged periodically [19]. The choice of chemical selected for extraction is dependent on the type of 
extractives present, acetone is effective at removing resinous extractives [19]. The Larix genus being a 
notable example where hot water extraction at 60 ◦C is recommended due to the nature of extractives 
present in the wood [20]. Removal of extractives can occur before or after machining. If the quantity of 
extractives is of interest, for example via NIR spectroscopy, then the samples can be scanned prior 
to extraction to estimate the extractives content. Figure 1 shows a densitometer sample before and 
after extraction. 
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4. The Role of NDE in Tree Breeding 

Tree breeding is one of the tools used by plantation growers to maximize proftability, shifting 
the mean of multiple traits to increase the quantity and quality of wood products. At its core, 
breeding uses a cycle of selecting superior trees, testing superiority, mating among superior trees, and 
deploying superior genetic material [21]. Wood properties are generally more heritable than growth 
properties [22,23]; however, growth and form properties have been the focus of selection due to the 
cost of measuring wood properties. Various NDE tools are being used in breeding programs globally 
(Table 1) to achieve improvements in key wood properties, consistent with the objectives listed earlier, 
these include screening, genetic parameter estimation and biotechnology. 

Running a breeding cycle requires an understanding of both within- and among-tree variability for 
each of the traits that the breeding program is targeting, and the genetic correlations among the traits of 
interest. Moreover, breeders need to partition the observed variability into genetic and environmental 
components, to base selection on genetic superiority. While estimating a population mean for genetic 
trials is possible with a few dozen individuals, good estimates of the genetic structure may need 
hundreds of samples (for heritability), while needing many hundreds or thousands of samples to 
estimate genetic correlations between traits. 
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Table 1. Wood properties criteria used for early selection in a number of countries. Only criteria and tools used frequently are listed. 

Country Species Criteria (Tool) Operational 

Argentina Eucalyptus globulus, E. grandis, E. dunnii Cellulose and lignin content for genomic models (NIR) Research 

Pinus radiata Wood density (Resistograph) 
Standing-tree AV with ST300/TreeSonic 

Yes 
Yes 

Eucalyptus globulus Wood density (resistograph) Yes 

Australia Eucalyptus nitens Standing-tree AV with Fakopp 
Wood density (Resistograph) 

Opportunistic 
Research 

Pinus elliottii var. elliottii × Pinus caribaea var. hondurensis hybrid 
Pinus caribaea var. hondurensis 

Pinus caribaea var. caribaea 

Standing-tree AV with ST300 
MOE (Resistograph, NIR, ultrasound) 

Yes 
Research 

Chile 

Pinus radiata 
Eucalyptus globulus 

Wood density, pulp yield, specifc consumption (NIR) 
S/G ratio, cellulose (NIR), 

Wood density (Resistograph) 

Yes 
Research 

Pinus radiata Standing-tree AV Yes 
Eucalyptus globulus Wood density, pulp yield (NIR) Yes 

Wood density (Pilodyn, X-ray microdensitometry) Yes 
Larix sp. MOE (Rigidimeter) Yes 

Heartwood extractives (NIR) Yes 
France Wood density (Resistograph) Yes 

Pinus pinaster Spiral grain (Spiralite) 
Lignin and cellulose content (NIR) 

Yes 
Research 

Microdensity to relate growth and climate (X-ray cores) Research 

New Zealand 
Pinus radiata Wood density (Resistograph) 

Standing-tree AV with ST300/Treetap 
Yes 
Yes 

Eucalyptus bosistoana Extractives content (NIR) Yes 

USA 
Pinus taeda 

Pseudotsuga menziesii 
Tsuga heterophylla 

Wood density (Resistograph) 
Standing-tree AV Treesonic 
Standing-tree AV with Tree 

SonicStanding-tree AV with TreeSonic 

Yes 
Yes 
Yes 

Mostly 

Note: AV = acoustic velocity and MOE = modulus of elasticity. 
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Tree breeders prefer non-destructive assessments, because (i) destructive techniques are often 
slow and expensive, making it impossible to collect the desired number of samples in time and in 
budget, and (ii) once the best trees are identifed they need to be alive for crossing and/or propagation. 
Another constraint is that breeders like to assess trees as early as possible, often between 1/4 and 
1/3 of rotation age. It is possible to detect differences in the wood properties among genotypes even 
earlier, with screening reported as early as eight months of age, e.g., [11]. Assessing wood properties in 
seedlings requires novel modifcations of standardized techniques, such is shown in acoustic velocity 
assessment [24,25]. Gonçalves et al. [26] tracked growth and wood properties from three months to six 
years to estimate the future quality of clones. 

Two key considerations when breeding trees are (1) the presence of radial profles and (2) the 
type of trait: maximization (as tree volume) or threshold (MOE grades). Very early screening of 
maximization traits is extremely difficult, but when dealing with thresholds we can reframe the 
selection process as frst pass the bar, e.g., [27], which is much easier to achieve. 

Genomics 

The use of DNA markers promises to lower selection age even more, reducing the need for 
continuous phenotypic assessment, including wood properties [28,29]. In general terms, phenotypic 
data are used to predict genetic values [30], which are deregressed [31], and then a variant of the method 
proposed by Meuwissen et al. [32] is used to build a linear predictive model of genetic performance 
based on DNA markers. Furthermore, long-term use of genomics requires recalibrating the prediction 
equations after a few cycles of selection, which will, again, need a substantial number of phenotypic 
assessments for newer material in the breeding program [33]. 

However, this approach still needs relatively large datasets for building the statistical models, 
a task for which NDE is well-placed. For example, when building genomic selection models, Resende 
et al. [34] used Pilodyn to predict wood specifc gravity and NIR to predict pulp yield from increment 
cores for 920 trees. Cappa et al. [35] assessed 303 trees with Pilodyn to predict density and NIR to 
predict lignin content, syringyl:guaiacyl (S:G) ratio, and extractives content. More recently, Beaulieu 
et al. [36] used SilviScan on 1694 trees to assess 11 wood properties. 

5. Standing Tree or Log NDE 

5.1. Acoustics 

The concept of using acoustic wave velocity (AV) as a measure of wood quality has been widely 
recognized in both wood manufacturing and forestry sectors. A variety of acoustic measurement tools 
have been developed and applied to various wood products (e.g., lumber, veneer, laminated veneer 
lumber (LVL), glulam beams) and raw wood materials (logs and standing trees) for quality evaluation. 
The development of standing tree acoustic tools has opened the way for assessing wood properties on 
standing trees before harvest, enabling management, planning, harvesting, and wood processing to be 
carried out in a way that maximizes extracted value from the resource [37–39]. Perhaps the largest 
widespread use of assessing acoustic velocity of standing trees is via tree improvement programs who 
have adopted AV tools for the assessment of breeding trials [27,40–43]. 

AV has been used to predict MOE, generally referred to as dynamic MOE via: 

MOEdyn = ρAV2 

where MOEdyn is dynamic MOE, ρ is the density and AV is the acoustic velocity. For standing trees the 
AV is assessed by measuring the time of fight (TOF) of acoustic waves between two measuring points 
(typically centered around breast height). The two sensor probes (transmit probe and receiver probe) 
have frequencies of 1–2 kHz and the acoustic energy is generated in the tree through a hammer impact. 
Figure 2 shows the use of a portable TOF acoustic tool for measuring AV in standing trees. An alternative 
acoustic approach (resonance) is typically used for logs, hence measurement principles for standing 
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trees and logs are different. TOF only measures the outerwood of a tree to a depth of 20–30 mm over a 
distance of approximately 1 to 1.2 m (determined by the distance between measurement points) [37,44], 
while resonance measurements are representative of a whole log and considered more accurate than 
TOF tools [45]. Relationships derived between the two sets of measurements are biased and require 
adjustment to allow direct comparison [46]. Ignoring the bias there is a good relationship between tree 
and log AV [37,46–50]; although it has also been observed that the relationship between the two sets 
of measurements weakens in older stands, presumably because outerwood properties become more 
consistent in older trees. 
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The density term in the MOEdyn equation is generally assumed to be constant when assessing 
standing trees and logs, although measuring the actual green density can improve the accuracy of 
the acoustic velocity models if relating to static properties is of interest [51–53]. Measuring the basic 
density is not a suitable technique for improving the accuracy of the MOEdyn equation [53] because AV 
changes with moisture content [54,55]. AV increases rapidly with decreasing moisture content below 
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the fber saturation point. Above the fber saturation point AV will decrease with increasing moisture 
content but at a slower rate than below the fber saturation point [54,55]. 

Many studies have demonstrated good relationships between tree or log AV and MOE of small 
defect-free wood specimens [56], and moderate relationships between tree or log AV and MOE 
of structural products [47,49,50,53,57–60]. For example, Ikeda and Arima [47] reported signifcant 
correlations between tree AV and MOE of logs and square sawn timbers in sugi (Cryptomeria japonica 
D. Don), while Huang [57] demonstrated that loblolly pine trees with potential to produce high and 
low stiffness lumber can be identifed by tree AV alone. Hence, with simple velocity measurements, 
individual trees and stands can be evaluated and sorted for their potential to provide structural quality 
lumber, and hence better evaluate stumpage values of standing timber [37]. Moore et al. [58], working 
with Sitka spruce (Picea sitchensis (Bong.) Carr.), and Butler et al. [53], working with loblolly pine, 
set threshold values of AV measured from logs to correspond with thresholds of MOE of lumber cut 
from logs. Attempts to use standing tree AV measurements to assess fber attributes (measured using 
SilviScan) and pulp yield have provided mixed results [61,62]. 

Studies have been conducted to investigate how silvicultural practices affect AV of trees in a 
stand, information that is important to managers wishing to make informed decisions to enhance 
stiffness of harvested material and better determine the value of plantations [60,63–67]. Standing tree 
acoustic tools were found to be practical on a large-scale for stand level comparisons of wood and fber 
properties and for assessment of thinning impacts [66,68]. 

In response to demands from the forestry and forest products industries for a feld tool capable 
of assessing wood quality, extensive research with many species has demonstrated the use of TOF 
acoustic tools for predicting stiffness in standing trees. Globally acoustic technology is increasingly 
being implemented in forest and wood processing operations, especially when end-product value is 
directly associated with wood properties (e.g., high stiffness). 

5.2. Pilodyn 

The Pilodyn is a portable tool for assessing density in standing trees. As noted by Cown [69], 
“originally developed in Switzerland to obtain quantitative data on the degree of soft rot in wooden 
poles”. Its use involves the injection of a striker pin (spring-loaded) into wood with a known 
force. A scale on the surface of the instrument (Figure 3) provides a measure of pin penetration [69]. 
Pin penetration depth is negatively correlated with wood density. Three different striker pins (2.0, 2.5, 
and 3.0 mm diameter) allows Pilodyn use to be adapted to the density of the wood being tested [70]. 
As summarized by Gao et al. [70] r-values ranging from −0.81 to −0.90 have been reported for various 
softwood species including eastern white pine (Pinus strobus L.); European larch (Larix decidua Mill.), 
loblolly pine, Norway spruce (Picea abies (L.) H. Karst.), radiata pine, western red cedar (Thuja plicata 
Donn ex D. Don), and white spruce (Picea glauca (Moench) Voss). 

Pilodyn penetration has a strong genetic correlation with wood specifc gravity (SG) as reported 
for various species including loblolly pine [71], slash pine (Pinus elliottii Engelm.) [72], Douglas-fr 
(Pseudotsuga menziesii (Mirb.) Franco) [73], and Eucalyptus [74–77] and it has been used as an indirect 
measure of density in tree improvement programs. As a small area of bark needs to be removed 
prior to testing, its application has been limited to young trees where this can be easily achieved [78], 
as opposed to older trees with thicker bark. In practice, accuracy of the Pilodyn is somewhat limited [69] 
and thus it is commonly used to estimate family average values, but it is considered unreliable for 
individual tree selection in breeding programs [79]. 

Pilodyn testing is one of the least invasive sampling techniques, however, the wood being 
evaluated in Pilodyn testing is only the outmost rings and thus is not representative of the stem’s 
mean density. It is also assumed that the wood being tested is above the fber saturation point (FSP) as 
pin penetration decreases as moisture content decreases below the FSP (approximately 30% for most 
species) [80]. 
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5.3. Resistograph 

The development of the Resistograph began in the early 1990s [81]. Early uses of the instrument 
have been in qualitative studies to identify decay and other defects in trees and poles [82]. Previous 
work with earlier instruments indicated that its ability to quantify density variation was limited [83] 
but still useful for breeding purposes [84–86]. Recent improvements in the instrument have resulted 
in generally higher correlations than previous instruments, and thus more widespread adoption for 
correlation with wood density. Gao et al. [70] concluded that, compared with other technologies 
(Pilodyn, torsiometer, nail withdrawal) the Resistograph was a lower cost and more rapid means of 
collecting wood density data. Over the past four years the IML PD400 (Resi) has been assessed in 
Australia and New Zealand as a means of quantifying basic density in individual standing plantation 
(eucalypt and pine) trees [87], and has become the operational assessment tool for wood density in the 
New Zealand and Australia radiata pine breeding programs. 

The instrument drives a 3 mm diameter needle through a tree at a set forward speed (feed speed) 
and rotation rate (rpm) and measures the resistance to turning (torque) producing a radial trace 
(Figure 4) at a sampling interval of 0.1 mm. The key features of this tool are its low cost in feld 
application, digital data capture and the relatively high-resolution data. A 400 mm long trace can be 
taken from a single tree in less than 20 s, with tests conservatively showing that 50 to 120 trees per 
hour can be sampled, depending on terrain, ground cover and the need for defning individual tree 
identifers on the instrument interface. 

The trace represents a profle of resistance every 0.1 mm and the radial variation in wood 
density [70,81,88]. Typically, this level of detail is more than commercial users require. As an NDE 
assessment they are primarily seeking a single value of wood density as a site or population average, 
with possibly some measure of variance among trees. To facilitate this need, software applications 
have been developed that allow the user to generate required values with minimal time and expertise. 
Web-based processing platforms (Figure 5) allow users to process Resi traces and download required 
values, in the process producing additional metrics such as diameter at breast height (DBH) and bark 
thickness (Figure 5). 
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Initial resource characterization in radiata pine across the Murray Valley in Australia indicated 
that site average values of density predicted from the Resi explained over 80% of the variance in site 
average density obtained from 50 mm outerwood cores collected the previous year [88]. Subsequent 
work has demonstrated its ability to provide an accurate measure of wood density across a range of 
eucalypt plantations within Australia [87] with phenotypic correlations explaining better than 80% 
of the variance. Other work in radiata pine and eucalypts has further demonstrated similarly strong 
relationships in multiple studies across Australia and New Zealand. The strongest relationships are 
obtained when Resi traces and validation core samples are taken as spatially close together as possible. 

The Resi has demonstrated sufficient commercial value to warrant its operational use by many 
forest growers, particularly as contracts for log supply between growers and processors increasingly 
include wood quality metrics that provide an incentive to growers to improve wood quality. However, 
there are still research questions that need to be addressed to improve the application and support 
of the technology. Many of these questions have been addressed to some extent in recent years, 
e.g., [89]. While the questions are valid and need addressing, they should not preclude the use of the 
technology for wood density NDE. Commercial uptake will be an incentive for ongoing refnement 
of the application. The following questions are not intended to be an exhaustive list, nor a complete 
review of the work done in these areas. 

Issues Related to Resistance Drilling 

The Resi traces shown in Figures 4 and 5 are full diameters and part diameters respectively. 
The trace in Figure 4 shows the fat line at the end (right hand side) where the needle has emerged 
from the opposite side of the tree. The presence of this fat line can be used by processing software to 
automatically categorize a trace into full and partial diameters. The resistance value of the fat line 
is typically greater than zero because of needle drag. This drag can vary signifcantly between trees, 
but if quantifed can be corrected using a linear baseline correction. This raises the question of whether 
the drag effect is linear across the diameter? In contrast, trace-specifc drag cannot be quantifed in 
an incomplete diameter trace. Drag has been shown to be primarily driven by diameter and density 
variation and a generic correction has been defned and implemented in the web-platform. 

The Resi also allows the forward resistance of the needle to be recorded as well as torque. The effect 
of needle drag on this measure is much less [90], and the effectiveness of this measure for predicting 
wood density requires a more thorough analysis. Initial studies have suggested it explains slightly less 
variance in wood density than turning resistance (Downes, in preparation), and operationalizing the 
technology has focused on the latter. 

The effect of wear on the needle over repeated drillings has been assessed in several studies, 
e.g., [89,91] and ongoing monitoring is warranted in quantifying the effects across species. The Resi 
needle is very fexible and does not always follow a straight path across the diameter. Under some 
conditions, curvature can be severe and seems to interact with the slope of grain. If the trace is taken 
with a marked angle down, then the needle tends to curve to the right, while the needle tends to curve 
to the left with a marked angle up. Some degree of curvature can be assessed in full diameter traces, 
observing the exit point, whereas in partial diameter traces this is unknown. 

As more commercial users employ the technology the degree to which instrument specifc 
coefficients to convert resistance values to wood density are required warrants more systematic 
assessment, especially when multiple instruments are used within the same operation. Downes 
et al. [87] compared several different instruments used on different sample sets and the different 
relationships with basic density that resulted. These coefficients indicated that the relationship was 
consistently linear (at least at the level of variance observed) but could be affected by species, range of 
actual wood density in the population (seasonal variance was not accounted for). 

There is enough evidence to demonstrate the effect of moisture on the resistance values comparing 
dry timber with green but quantifying the effects in standing trees, especially with respect to heartwood 
and sapwood, warrants further study [89,92,93]. 
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Given the above sources of variance, the degree to which the same relationships between resistance 
units and basic density remain constant across species is yet to be established. 

The ability to process the Resi trace to extract other wood properties warrants investigation [94]. 
Likewise, the potential to extract annual ring widths and growth trajectories in plantation inventory has 
obvious value. Its use in conjunction with growth and wood property models such as eCambium [95] 
is a current area of investigation. 

5.4. Rigidimeter 

The Rigidimeter was designed to evaluate MOE directly from standing trees [96]. It was inspired 
by Koizumi and Ueda’s [97,98] tree bending equipment, itself inspired by previous work, e.g., [99] and 
related to the work of Langbour [100] and Milne and Blackburn [101] who used cables to pull trunks 
to evaluate lengthwise bending rigidity of standing trees. The Rigidimeter benefted from several 
progressive improvements concerning both its handling and reliability [102]. The Rigidimeter is made 
up of two independent units: the frst one is the trunk-bending mechanism and the second measures 
the resulting defection (Figure 6). 
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setting up in an experimental trial of Populus in Chile. 

The device is fastened onto the trunk with connections to the tree stem secured using two wide 
steel contacts located on both ends of the gantry. The trunk is bent (within the elastic region of the 
stress–strain curve) by applying pressure generated by a foot-operated hydraulic pump via hydraulic 
jacks at two points. A digital load cell with accuracy of 10 N directly measures the pressure. The mean 
defection of the trunk is then measured 1.3 m above the ground level by the second unit with an 
accuracy of 10 µm in response to the load applied to the stem [103]. 

Within a given plane of a tree, repeated measurements of bending with the Rigidimeter showed 
excellent repeatability (r = 0.99) [96] but measurements in two orthogonal directions are recommended 
to improve accuracy especially in the presence of reaction wood [102]. As the calculation of MOE 
includes tree diameter raised to the power of four, particular care to measure over bark diameters with 
a precision of 1 mm is required [102]. Validation testing has compared standing tree MOE with boards 
or small defect-free specimens measured using standard methods. At the tree level, Pearson correlation 
coefficients for several conifers were moderate to high (0.48–0.90) [96,97,103], and all authors found 
high correlations at the genotype (clone, full-sib families) mean level (0.74–0.86). 
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The Rigidimeter is particularly well-suited for ranking genotypes [96,98,103–105]. Rigidimeter 
MOE values showed large phenotypic and genetic variability (in contrast to some other wood 
traits like density), moderate to high levels of heritability and low genetic by environment (GxE) 
interaction [106,107]. In a study in New Zealand (unpublished), trunk MOE measured with the 
Rigidimeter on standing radiata pine trees was found to be genetically variable and signifcantly 
correlated with acoustic velocity and stem knottiness index. Perspectives for genetic improvement of 
wood stiffness using the Rigidimeter have been clearly demonstrated in hybrid larch [107]. 

The Rigidimeter weighs approximately 18 kg and is easily handled (e.g., quickly tied to a tree, 
rapid loading) and it has been designed for deployment in adverse weather conditions, provided the 
trees are not frozen. Seasonal effects on stiffness estimation on standing trees were limited [108]. It is 
well-suited to estimate stiffness of trees with a BH diameter in the range 10 cm to 20 cm. Over 50 trees 
per day can be assessed by a team of two provided trees have been previously pruned up to 2 m from 
the ground. 

While the Rigidimeter is not a high-throughput phenotyping tool, it has found its place in tree 
breeding programs in the last steps of the selection process when most trees in genetic trials have been 
discarded based on other selection criteria such as growth and form. For example, the Rigidimeter 
is particularly suitable for assessing the stiffness of a few hundred trees before the fnal selection. 
The genetic gain efficiency proved to be then higher than indirectly selecting on density [103]. In our 
experimental conditions, this would preferentially occur when trees are between 15- and 20-years-old. 

More detailed study of stiffness changes in the trunk with age is possible through repeated 
measurements of the same standing trees with the Rigidimeter. For example, measurements made on 
corewood (juvenile wood) and later on outerwood (mature wood) can be used to separately estimate 
MOE’s of corewood and outerwood, provided the trees have DBH’s in the 100 to 200 mm range [102]. 
Other uses of the Rigidimeter in plantations have been suggested, such as the study of factors such as 
wind on stem asymmetry and reaction wood [102]. 

5.5. Near Infrared (NIR) Spectroscopy 

This NDE technique utilizes spectra measured in the NIR region of the electromagnetic spectrum. 
Wavelengths measured, and their resolution, vary by instrument but the most useful region for 
qualitative analysis by NIR refectance is 1200 to 2500 nm (8333–4000 cm−1). NIR spectra largely consist 
of overtone and combination bands of fundamental stretching vibrations of O–H, N–H and C–H 
functional groups observed in the mid-infrared region. All wood components (cellulose, extractives, 
hemicellulose, and lignin) possess these groups, hence any wood property changes can be observed in 
measured spectra; however, the presence of multiple overlapping overtone and combination bands 
makes interpretation of wood spectra problematic. Analysis of wood by the technique relies on the 
development of a multivariate model using a characterized set of samples and NIR spectra collected 
from the surface of these samples (either solid or milled wood) and using the model to predict 
properties for a set of uncharacterized samples. NIR spectroscopy is a highly sensitive technique hence 
the adoption of strict operating practices to ensure consistency of all aspects of its application and to 
minimize variation is strongly advised. Sandak et al. [109] provide many practical recommendations 
for the successful application of this technique. 

The earliest NDE applications of NIR spectroscopy were in agriculture where it was utilized to 
determine the moisture, crude protein, and oil concentrations in cereal grains and oil-bearing seeds [110], 
while it was not until the late 1980s that potential wood-related applications were reported [111,112]. 
Of primary interest were properties directly related to the economics of the pulp and paper industry, 
particularly pulp yield, which is expensive and time-consuming to measure using standard methods. 
Since this time there has been rapid growth in NIR–wood related research [113] with a broad range of 
wood properties and products examined. However, the earliest studies, which predominately focused 
on wood chemistry, highlighted the greatest strength of this technique, and one that no other NDE 
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method possesses, and that is the ability to estimate wood chemistry, or properties directly related to 
chemistry such as pulp yield. 

NDE evaluation of standing trees can potentially be achieved using spectra collected on-site or 
in the lab based on spectra collected from a milled increment core. Utilizing milled increment cores 
to estimate whole-tree properties has been the most common approach. It has been demonstrated 
that spectra from milled breast height cores can provide good calibrations for estimating whole-tree 
properties [114,115] and this approach has been adopted by several forest industry companies to assess 
progeny in their breeding programs [116]. The frst option is the most desirable; however, seasonal 
variation in pulp yield at the cambial surface (the surface from which a spectrum is collected with a 
portable spectrometer) has proved too variable to produce consistent calibration performance [117–119]. 
In related research, Muneri et al. [120] compared estimates of pulp yield obtained using NIR spectra 
collected directly from standing trees using a portable NIR instrument and with those obtained from 
milled increment cores on a lab-based spectrometer. They concluded that the lab-based measurements 
provided better results. NIR predicted wood properties based on spectra from milled increment cores 
have also been used for resource assessment. Arauco (Chile) have developed models for pulp yield, 
basic density, and specifc consumption (wood required per unit of pulp) for at least 30,000 ha of their 
plantation estate [116] while Giroud et al. [121] examined regional variation in density and MOE for 
several boreal species in Quebec, Canada. 

6. NDE on Radial Samples 

6.1. SilviScan 

SilviScan is a linked system of instruments and software for the rapid, automated analysis of the 
structure and properties of wood in small samples cut from increment cores. Other samples, including 
samples from discs, can be used if prepared appropriately (Figure 7). The system is designed to take 
into account many of the uncontrolled natural variations in wood, such as non-concentric annual rings, 
spiral grain, and diving grain. In addition, SilviScan accommodates less than perfect sampling and 
sample preparation. 
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The main components of SilviScan (Figure 8) are: 

• Optical Cell Scanner (radial and tangential tracheid and fber diameters, vessel size and position, 
ring boundary position, ring orientation); 

• X-ray Densitometer (conditioned density profle, fber tilt, ring boundary position); 
• X-ray Diffractometer (microfbril angle (MFA), tracheid and fber 3D orientation, cellulose crystallite 

width). 

From these primary measurements, many other properties (coarseness, wall thickness, specifc 
surface area, MOE, modulus of rupture, longitudinal shrinkage, paper sheet density, growth 
rate, EW/LW ratio, compression wood, tension wood) may be estimated, depending on the 
sample type. NIR spectroscopy was intended as a fourth component but this was only partially 
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implemented/integrated and continues to be a topic of investigation. Measured data are exported both 
as radial profles at 25-micron intervals and as tables of annual ring widths and statistical properties 
(mean, median, percentiles, and standard deviation) for each wood characteristic. 
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6.1.1. SilviScan Operation 

Radial wood sections are cut to the dimensions 2 mm × 7 mm (tangential × longitudinal), extracted 
with acetone if necessary (softwoods only), reconditioned at 40% relative humidity and 20 ◦C, resulting 
in a moisture content of about 7%. If preventive measures are not taken, blue stain fungus in some 
softwoods can be a problem because the melanin produced by the fungus has very high absorbance 
over the range of wavelengths used for imaging. To correct this after staining has occurred, mild 
hydrogen peroxide bleaching can be an effective treatment. One transverse face is polished using 
sandpaper with grit sizes 240, 400, and sometimes 1200 or 1500 for woods with very thin cell walls. 
The systems in Vancouver and Stockholm have automatic polishing systems. In Melbourne, the 
polishing was automated for many years but is currently done by hand. 

6.1.2. Image Analysis 

For the determination of tracheid diameter, samples are placed on a linear motor, above which is 
mounted a software-controlled autofocus microscope with a charge-coupled device (CCD) camera from 
which contiguous 1392 × 1040 pixel × 16-bit images are obtained (2048 × 2028 pixels in Melbourne since 
2015). The pixel size is 1.29 µm if a 5× objective is ftted, and 0.65 µm for a 10× objective. Illumination 
of the samples is by long wavelength light-emitting diodes (typically in the range 650–880 nm) directed 
to the sides of the sample below the surface. The light is scattered within the sample and conducted 
along the cell walls, emerging at the polished cell wall cross-sections. The lumens remain relatively 
dark, as they are blocked by sanding dust (Figure 9). Custom software stitches the images together, 
binarises them, and measures the radial and tangential tracheid diameters in 25 µm intervals from pith 
to bark, parallel to the ring boundaries. 
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6.1.3. Densitometry 

Radial density profles are determined by calibrated imaging X-ray densitometry (see Figure 10 
for an image of a spruce sample) using a copper fne-focus X-ray tube in point focus orientation. 
The source is placed far from the sample to optimize the spatial resolution. The sample is placed on 
a linear motor mounted on a turntable to allow the automated alignment of the annual rings with 
the X-ray beam (20 mA, 35 kV, nickel fltered). Depending on the rate of change of ring angle, the 
X-ray camera (1392 × 1040 pixels) records up to 7 mm of radial density profle per step, at a pixel size 
of about 6 µm. Intensity is converted to density (ρ) using a modifed form of the Lambert–Beer law, 
allowing for residual polychromaticity of the X-ray beam: 

1 I0ρ = ln 
µmt I 

where µm is X-ray mass attenuation coefficient, t is sample thickness in the direction of the X-ray 
beam, I0 is the incident X-ray intensity and I is the transmitted intensity. SilviScan is calibrated to 
take into account the effect of X-ray polychromaticity on the mass attenuation coefficient. The density 
profles are mapped onto the same 25 µm interval scale as the image data for the calculation of cell 
wall thickness, coarseness, and specifc surface area. 
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6.1.4. Diffractometry 

The measurement of MFA is based on X-ray transmission diffractometry using a copper fne-focus 
X-ray tube in point focus orientation. The nickel-fltered beam (20 mA, 35 kV) is focused to 200 µm at 
the sample using a parabolic capillary. An intensifed CCD camera with a tapered glass fber optic 
coated with a thin X-ray sensitive phosphor and bonded to a 1392 × 1040 pixel CCD (the same type as 
that on the densitometer), is used to image the diffraction patterns (Figure 11). The X-ray pencil beam 
is directed parallel to the annual rings, automatically controlled by the information from the image 
analyzer. MFA is calculated from [122]: � � 

MFA2 = 2 S2 
− σ2 

where S is the resolution-adjusted standard deviation of the azimuthal profle of the 002 diffraction 
peaks and σ is the local standard deviation of microfbril orientation. 
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Figure 11. X-ray diffraction pattern of wood with fber direction approximately vertical. 

MFA represents only the crystalline cellulose of the S2 secondary wall layer. Non-cellulosic 
polysaccharides and lignin, the relatively unoriented primary wall, the secondary walls S1 and S3, 
and parenchyma cells contribute to the base line. MFA is corrected for broadening caused by tracheid 
tilt in the X-ray beam. The MFA radial profle is determined over intervals chosen in the range 0.1–5 
mm and then placed on the same 25 µm interval scale as the other profles. 

6.1.5. Image Analysis 

Average tracheid wall thickness w is derived from the primary results of image analysis and X-ray 
densitometry: s 

8w 16Aρ 
= 1 − 1 −

P P2ρw 

where P is tracheid perimeter, A is area per tracheid, ρ is wood density, and ρw is tracheid wall density 
(~1500 kg m−3). The middle lamella is included, and other softwood cell types are ignored. In order to 
perform this calculation, the image and density profles are accurately aligned by cross-correlation 
of all common features. Relationships such as this have been used for more than half a century, 
e.g., [123]. Application to fbers in hardwoods is more complex, as it requires correction for other cell 
types—particularly vessels. 

6.1.6. Elastic Modulus 

The longitudinal MOE of wood is calculated from the densitometric and diffractometric data 
according to the relationship [124]: 

bMOE ≈ c.Icv
a .Db MOE ∼ a(IcvD) 

where MOE is longitudinal modulus of elasticity, Icv is the coefficient of variation of the intensity of the 
002 azimuthal diffraction profle, D is wood density, and a and b are instrumental calibration constants. 
The SilviScan results are consistent with empirically collected elastic moduli from sonic resonance 
methods (standard error ~1 GPa). 
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6.1.7. SilviScan Evolution 

1988–1993: SilviScan-1 

SilviScan-1 (Figure 12) was the initial prototype. It incorporated transmitted light imaging, 
stitching of sequential data to form full radial profles of properties, conventional X-ray absorption 
densitometry using a scintillation detector, and conventional X-ray diffractometry of small sections of 
samples. Evans found in 1989 that the transverse surface of thick sections of polished wood could 
be imaged in transmission using a tungsten light source. It was clear that only longer wavelengths 
were being transmitted, so the cost and complexity of the system was greatly improved by using long 
wavelength diodes. The samples could be illuminated either in line with the microscope optics or from 
the side. In either case the light traveled along the fber walls and gave images with high contrast, 
suitable for automated image analysis. 
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Figure 12. SilviScan-1. 

1993–2001: SilviScan-2 

SilviScan-2 (Figure 13) was the second prototype, specializing in the image analysis of hardwoods 
such as eucalypts. The pixel size was less than 0.9 µm. This system continued the all-in-one design 
concept, using a single transport system and one X-ray source for both densitometry and diffractometry. 
SilviScan-2 was the frst instrument to demonstrate the estimation of MFA using a 2D detector, which 
enabled high throughput radial measurement of MFA on samples. The X-ray source was a copper 
rotating anode type with a 100 µm target. A glass capillary focused the X-ray beam to 200 µm at the 
sample and two different cameras were used to capture diffractometric and densitometric information. 
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2001–Present: SilviScan-3 

SilviScan-3 (Figure 14) is the current incarnation designed for greater efficiency and lower 
maintenance costs. This system is installed in Australia (University of Melbourne, Burnley), Sweden 
(Innventia, Stockholm), and Canada (FP Innovations, Vancouver). The functions of optical image 
analysis, densitometry, and diffractometry are separated and run independently, thereby greatly 
increasing analysis speed. The Cell Scanner has interchangeable lenses and diode lighting systems 
allowing the use of a wide range of resolutions and illumination wavelengths. The image pixel size 
can be 0.65 µm, 1.3 µm or 1.6 µm, depending on the objective lens (10×, 5×, 4×). Both transmitted and 
refected light images are obtained on each sample run. SilviScan-3 uses 880 nm diodes for transmitted 
light imaging. Refected light imaging has been performed using a wide range of wavelengths. 
The system currently uses 450 nm (blue) but green, red, and infrared have all been employed over 
the last 25 years. It would be possible to use readily available UV diodes in SilviScan’s illumination 
system for refected light imaging and fuorescence studies, given the appropriate optics and camera. 
When lighting systems are changed, SilviScan corrects for residual chromatic aberration and its effect 
on magnifcation and focal plane position. Forests 2019, 10, x FOR PEER REVIEW 20 of 51 
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Both the software and hardware in SilviScan have been designed to follow technological and 
scientifc advances. This has allowed us to take advantage of huge increases in computer power, 
to follow the development of cameras and of light-emitting diode (LED) lighting. In addition, 
as operating systems, drivers, and other third-party software evolve, SilviScan has been adapted. 
Except for a few fundamental principles, SilviScan-3 bears very little resemblance to SilviScan-1. 

6.1.8. SilviScan Applications 

Some of the ways in which wood property information is used are discussed briefy below. 
The reference list is far from exhaustive; there are many others, including conference papers, confdential 
reports and works-in-progress. Some references belong in more than one category, but have been listed 
only once. 

Silvicultural and Environmental Effects on Wood, Including Dendroclimatology, Dendrochronology 
and Cambial Modeling 

SilviScan produces profles of wood properties from pith to bark at regular spatial intervals. 
The equivalent climate information is based on regular time intervals. The two types of information 
can be matched using the radial growth rate of the tree. In this way, the variations in the core properties 
can be related to the external (silvicultural and climatic) infuences acting on the cambium [125–141]. 
In addition, cambial process modeling is greatly accelerated by the availability of high-resolution wood 
property information. 

Genetics and Selection 

In order to gain the maximum benefts from commercial forestry it is necessary to improve the 
capacity for early selection. Intensive measurement of wood properties using SilviScan has aided 
geneticists and tree breeders in selection of the best trees for future generations [142–151]. Ring-by-ring 
analysis of parent trees and their offspring can be used to generate heritabilities of wood properties as a 
function of tree age, e.g., [142,143]. By bringing forward the identifcation and use of improved genetic 
material, the rate of genetic gain can be increased. The use of efficient DNA profling in conjunction 
with rapid phenotyping can short-circuit the breeding process and revolutionize plantation forestry, 
provided environmental factors are considered. 

Measurement Methods 

Some of the measurement principles of SilviScan are described in these publications [152–169], 
including a few comparisons of SilviScan data with data obtained by other methods. The full description 
of SilviScan operation has not been published in detail because of its extent. It is important to recognize 
that some of the relationships used by SilviScan were discovered as early as the 1960s by exceptional 
researchers such as Diana Smith and Alfred Stamm. 

Pulp and Paper Properties 

The original purpose of SilviScan-1 was the improvement of the quality of pulpwood from 
softwood plantations [170–179]. One of the most consistent requests from pulp mill operators is that 
wood supply to the mill be uniform from day to day; absolute measures of quality are largely secondary 
to uniformity of supply. It is now possible to map the forest and plantation resource in terms of many 
pulpwood quality characteristics. 

Solid Wood Properties 

Although the original requirement of Australian industry was for pulp quality improvement, 
the primary data is more directly applicable to the uses of solid wood [180–198]. In some of these 
studies, the ability of SilviScan to analyze large numbers of samples in great detail has been used to 
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map the interior structure of stems to give a more comprehensive understanding of wood property 
variation over a wide range of scales. 

Integration with Spectroscopic Methods 

The development of relationships between wood properties and product properties often requires 
both morphological and chemical information. Appropriately calibrated NIR spectroscopy may 
be used to estimate many of the physical and chemical properties of wood. Combination of these 
complementary technologies can, in some circumstances, allow more comprehensive and cost-effective 
large-scale assessments of wood quality [199–208]. 

6.2. Near Infrared Spectroscopy 

One of the most successful NDE applications of NIR spectroscopy is in the estimation of genetic 
parameters, particularly those related to pulp production, where NIR presents the only viable option 
for analyzing the necessarily large sample sets [209]. The earliest studies [198,210] utilized NIR spectra 
from milled increment cores to estimate genetic parameters and genotype × environment interactions 
for pulp yield, pulpwood productivity, and cellulose (a pulp yield substitute) in Tasmanian bluegum 
(Eucalyptus globulus Labill.), a species grown widely in temperate regions for the quality of the wood 
pulp it produces. Later studies on the same species [209,211] reported genetic parameters for extractives, 
lignin content, and S:G ratio. Similar studies in related hardwood species have followed [212–216], and 
the range of properties assessed has also been expanded to include basic density and lignin content. 
Equivalent work in softwoods is rare, with an example being a study based on maritime pine (Pinus 
pinaster Aiton) grown in France [217]. Related studies have used NIR predicted data for determination 
of quantitative trait loci and in association mapping for pulp yield and related properties (cellulose, 
lignin, S:G ratio, and extractives) [218–224]. 

A critical aspect is the multivariate model used for the prediction of properties. Owing to the 
nature of the genetics-related studies, no attempt has been made to validate predictions; however, 
Schimleck et al. [225] and Downes et al. [226] showed that NIR-based predictions of pulp yield on 
independent sample sets provided strong relationships (i.e., samples known to have high pulp yields 
were predicted as such, as were low yielding samples). In addition, Schimleck et al. [212] in a study of 
a large shining gum (Eucalyptus nitens H. Deane and Maiden) sample set of known cellulose content, 
found that estimated genetic gains (based on forward and backward selection) using either measured 
cellulose data or NIR-predicted data were comparable. 

In any of these studies an assumption is that selected calibration samples represent the population. 
For a study of limited size, a subsample may be selected from available samples (e.g., [212]), and 
algorithms are available to assist with sample selection [227]. For example, with many of the eucalypt 
studies noted, costly individual models could have been developed for each study but as an alternative a 
model representative of temperate Australia developed at considerable expense was used [226,228,229]. 
Every identifable source of variation was included giving a high-level of confdence in predictions, 
but model applicability to a new or different population should be questioned and it is often an obstacle 
to adopting NIR technology. Continued inclusion of new samples into calibration models seems 
prudent since new sources of variation can be used to re-calibrate models and improve predictions [230]. 

NIR spectroscopy has also been employed to examine the within-tree variation of wood properties. 
Again, wood chemistry and related properties have been a focus with studies examining radial variation 
in pulp yield [231–233], cellulose and various wood sugars [232–234], extractives (acetone-soluble and 
hot-water), lignin, and total phenolics [235]. Radial variation in fber collapse, density, MFA, MOE, 
and tracheid properties have also been explored based on NIR-predicted data [204,234,236]. Using NIR 
predicted radial data from samples collected at multiple heights maps showing within-tree variation 
have been reported for pulp yield in shining gum trees [231] and density, MFA, MOE, and tracheid 
length in loblolly pine [237,238]. The density, MFA, and MOE calibrations were based on SilviScan data. 
In studies of within-tree variation of these properties where high resolution is not required and large 



Forests 2019, 10, 728 23 of 50 

numbers of samples have to be analyzed, NIR spectroscopy can provide a cost-effective alternative to 
SilviScan; however, SilviScan or a densitometer (for density) will always provide more accurate data. 

An initial issue with these studies was the low spatial resolution of measurements, for example 
Schimleck et al. [204] measured NIR spectra in 10 mm increments making studies of within ring variation 
impossible. More recent studies improved resolution to 1 mm [232–234,239], allowing within-ring 
variation to be examined, or the determination of single ring properties; however, an assumption was 
that calibrations based on whole-tree samples were applicable to spectra measured at a resolution 
of 1 mm. More recently, hyperspectral imaging has been used to examine radial variation at the 
disc level [240,241] greatly improving visualization of wood property variation; however, questions 
relating to the suitability of calibrations for high-resolution prediction and their verifcation still apply. 
Efforts to apply NIR spectroscopy to the examination of silvicultural effects have been hampered by 
inadequate resolution and insufficient sensitivity to detect differences among treatments [242]. 

6.3. Radial Sample Acoustics 

Acoustic wave propagation speed is directly affected by the ratio of a material’s stiffness to its 
density, and so is often employed to determine stiffness, usually with an independent density-measuring 
technique such as X-ray densitometry. The use of acoustics to examine wood property variation on 
strips, cores, and other small samples requires much shorter acoustic or vibrational wavelengths and 
hence much greater acoustic frequencies than standing tree tools [243]. The acoustic wavelength is 
calculated by: 

v
Λ = 

f 

where Λ is wavelength with units of m, v is velocity with units of m/s, and f is frequency with units of 
Hz (s−1). For example, to measure cores with a diameter of 10 mm, ultrasonic (>20 kHz) frequencies in 
the order of 1 MHz are likely to be employed. 

At such high frequencies careful consideration must be given to effective coupling of acoustic 
energy into the sample and the effect transducer/sample interfaces might have on the results. Acoustic 
speeds are also signifcantly infuenced by relaxation time-constants and energy damping of molecules 
in the sample, resulting in over estimation of stiffness if static stiffness estimates are required [244]. 
Consideration must also be given to the types of waves (e.g., shear, longitudinal, surface) that are 
being transmitted in the sample and how they affect results. Since wood is an orthotropic material, 
different acoustic speeds will be observed in different directions [245], and so grain orientation of the 
sample must also be determined or fxed. Finally, since the moisture content of the wood affects both 
its density and stiffness, the sample may need to be conditioned to a known moisture content [246]. 

Effective coupling of acoustic energy between the acoustic transducers and the sample can be 
achieved by minimizing the acoustic impedance mismatch between the transducer and the sample [247], 
and by maximizing the coupling area between the transducers and the sample. One can allow the 
transducers to contact the sample with suitable impedance matching tips, which may be soft to increase 
the coupling area. Non-contact approaches are also available. One possibility is to use an air-coupled, 
focused beam method which overcomes impedance issues by increasing intensity of the acoustic signal 
at the sample surface [248]. Another method is to directly excite acoustic waves on the sample surface 
using laser ablation [249] or plasma discharge, and to directly measure surface vibration using a laser 
vibrometer. If the samples are green (fresh) wood, it can be immersed in water to provide a better 
impedance-matching, non-contact option. 

Once the transducers are set up, the general method to measure acoustic speed is to send an 
acoustic pulse into the sample and to monitor the time it takes to propagate through the sample. 
The acoustic pulse must be short enough to enable accurate measurement of acoustic speed in the 
sample using the signal processing techniques available, while avoiding acoustic wave refections 
within the sample. An effective calibration method must also be employed. Using materials which 
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have known acoustic properties that are similar to wood, and which have the same shape as the wood 
samples to be measured, is an effective way to calibrate the whole measurement system. 

Mason et al. [250] found strong correlations between ultrasonic velocity and SilviScan MFA for 
radiata pine and an ultrasonic velocity disk scanner robot described by Mason et al. [250] has been used 
to obtain radial scans for 10 mm diameter increment cores (Apiolaza, in preparation). The machine 
will overestimate acoustic velocities, as it is testing with samples smaller than what it was designed 
for, but the radial profles are useful for selecting genetic material with low radial stiffness gradients. 
An ultrasonic velocity system has been employed by Dahlen et al. [251] to measure the radial and 
longitudinal variation in ultrasonic velocity at 10 mm radial increments for loblolly pine and Douglas-fr. 
Samples can be prepared from discs or 12 mm increment cores. The DiscBot system described in the 
next section presents a way to assess ultrasonic velocity on discs. With all of these systems, relating the 
ultrasonic velocity values to MFA is important. A yet to be answered question is whether a global 
calibration model can be applied to all species, that relates AV to MFA, or whether species specifc (or 
softwood and hardwood specifc), calibrations will need to be developed. 

6.4. DiscBot 

The DiscBot has been developed over the past ten years by Scion (the New Zealand Forest Research 
Institute Limited). It combines multiple NDE techniques (NIR hyperspectral imaging, radial sample 
acoustics, densitometry, and grain angle scanning) into a single platform to obtain data on the variation 
in selected physical, mechanical, and chemical properties within a tree (Figure 15). The rationale for 
developing the DiscBot was to be able to characterize the “true” extent of variation in these wood 
properties within a tree at approximately the cubic centimeter scale. It is hypothesized that variation in 
wood properties at this scale is a key determinant of end-product performance, particularly for products 
such as solid dimension lumber [252] where MOE and distortion are important characteristics [253,254]. 
A key challenge with predicting the performance of solid lumber is predicting distortion, which is driven 
to a large extent by localized gradients in longitudinal shrinkage and grain angle [255–258]. These 
gradients in longitudinal shrinkage are a combination of regions of high longitudinal shrinkage, such as 
those associated with the presence of compression wood [259], superimposed on the radial variation in 
longitudinal shrinkage that occurs within a tree, principally resulting from the corresponding variation 
in MFA [260–263]. 
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To estimate the variation in stiffness and shrinkage behavior of wood within a stem, the DiscBot 
collects information on chemical composition (primarily cellulose, lignin, and hemicellulose content), 
MFA, grain angle, and wood density. The DiscBot has fve sensors that capture information on 
the properties of disc samples that are 20–30 mm thick and have been conditioned to achieve an 
equilibrium moisture content of approximately 12%. Discs are mounted in a frame that moves them 
past the fve sensors and precisely records their position. A distortion-free RGB image is captured of 
the disc using a high-quality camera, which provides a permanent record and also enables features 
such as knots, resin pockets, intra-ring checks, and compression wood to be identifed. An imaging 
spectrograph ftted with an NIR camera (900–1700 nm) is used to image the transverse face of discs at a 
radial resolution of approximately 2 mm [239,240]. These NIR spectral datasets are processed using a 
chemometric model to produce estimates of the variation in lignin, glucose, and galactan content in 
radiata pine trees. MOE is predicted from information on wood density and MFA [161]. Wood density is 
estimated from measurements made with an X-ray line camera (150 kV X-ray source) at approximately 
0.5 mm resolution. MFA is predicted from ultrasonic time of fight measurements made with a pair 
of transducers that roll over the sample. A series of parallel paths 5 mm apart are traced across the 
sample to provide complete coverage. Linear potentiometers measure the thickness of the disc so that 
the velocity of the ultrasonic wave can be calculated. Previous research has shown that there is a strong 
negative linear relationship between ultrasonic velocity and MFA in radiata pine [249]. Finally, grain 
angle is measured non-destructively using “masked light transmission” [264]. This technique is based 
on the principle that light is transmitted some distance through wood, particularly in the axial direction. 
More specifcally, light entering the surface of a wood disc is hypothesized to be preferentially directed 
along the tracheid direction. By applying a barrier (mask template) above the disc to block the external 
light source, the defection of the light caused by the angle of the grain can be detected in a scanner 
and grain angle computed. 

While the system is still in development, examples of data obtained from the different scanners 
are shown in Figure 16. By taking multiple discs from within a single stem, intra-stem wood 
property maps can be produced that can then be used as inputs into numerical product performance 
simulators [252,258,265]. These data and the subsequent simulations enable the effects of silvicultural 
practices, environment, and genetics on intra-stem wood property patterns and their impacts on 
end-product performance to be determined. This will provide greater insights into the full impact of 
these factors which may not be uncovered through simply analyzing density and AV data collected 
on standing trees [266,267]. For example, it can be used to screen different clones to identify those 
that have intra-stem patterns of wood properties that make them more suitable to particular end-uses, 
rather than simply ranking them for density or MOE. 
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6.5. Computer Tomography (CT) Scanning 

The basic feature of X-rays is the capacity to penetrate an object under study while being attenuated 
according to Beer’s law [268]. Images acquired are referred to as projections or a radiograph. One of 
the disadvantages of a radiograph is that it is a 2D representation of a 3D object, thus depth information 
about an object is lost. Hounsfeld [269] solved this problem by means of tomography: projections are 
acquired at different viewing angles and these are used for subsequent 3D reconstruction of an object 
using specifc algorithms. Since then, X-ray Computed Tomography (CT) has revolutionized medical 
imaging and many other research felds. Due to developments in both hardware and software, the 
resolution of CT has increased signifcantly and high-resolution X-ray micro CT scanning (µCT) is now 
available facilitating microdensitometry and anatomical measurements on tree rings [270–272]. This 
section will cover applications for CT and µCT scanning. Typical resolutions for CT scanning are mm 
to sub mm, whereas µCT scanners are able to resolve sub µm resolutions [273]. 

The earliest work on the use of CT scanning for wood [274] used a custom-built portable CT 
scanner on living trees to measure the annual growth rate via annual ring measurements. Field use of 
CT scanning presents signifcant challenges and most work has since focused on bringing samples to a 
CT scanner rather than bringing the scanner to the tree. The work has since evolved to use CT scanning 
for measuring the density of wood blocks [275], or measuring density on increment cores with focus on 
improving information obtained during forest inventory work [276]. Research at Institut national de la 
recherche agronomique (INRA) has focused on utilizing medical CT scanning for high throughput 
scanning of increment cores [276]. The radial resolution that a CT scanner can resolve is less than a 
typical densitometer, however the sample measuring per time is seconds rather than minutes that a 
typical densitometer requires [277]. Thus, the utilization of CT scanning for wood quality studies is 
signifcant for improving information obtained from forest inventory efforts. There also exists the 
possibility of using CT scanning for tree breeding studies. 
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The large increase in the resolution of µCT scanning presents many exciting opportunities for 
studying radial variability in wood. With µCT scanners typical densitometry measurements on tree 
rings can be done; however, unlike typical densitometry sample preparation is less important [270– 
272]. Research at UGent-Woodlab has focused on utilizing µCT scanning for high-throughput 
scanning of increment cores [278,279]. The technique has been used for inter-annual [280–282] and 
intra-annual [283,284] tree growth studies. An example of a µCT scanner at the UGCT (UGent Centre 
for X-ray Tomography, www.ugct.ugent.be) is shown in Figure 17, and a cross-section scan through an 
increment core of oak is illustrated in Figure 18. 

Forests 2019, 10, x FOR PEER REVIEW 26 of 51 

 

rings can be done; however, unlike typical densitometry sample preparation is less important [270–
272]. Research at UGent-Woodlab has focused on utilizing μCT scanning for high-throughput 
scanning of increment cores [278,279]. The technique has been used for inter-annual [280–282] and 
intra-annual [283,284] tree growth studies. An example of a μCT scanner at the UGCT (UGent Centre 
for X-ray Tomography, www.ugct.ugent.be) is shown in Figure 17, and a cross-section scan through 
an increment core of oak is illustrated in Figure 18. 

 
Figure 17. A micro-computed tomography (μCT) system in use at Ghent University [285]. 

 
Figure 18. A 3D increment core of oak scanned at 35 μm resolution showing bark, early-wood vessels, 
and small and wide growth rings. 

μCT can be considered a tomographic microscopy technique, and therefore is a suitable tool for 
studying wood anatomy at the cellular level in three dimensions. Examples of its use include studies 
of the 3D structure of juvenile aspen [286], investigation of reaction wood in detail [287], and 
visualization of specific anatomical features [288–290]. 

One other important area for CT scanning is in evaluating knots, both through laboratory studies 
whereby branches are quantified and modelled, as well as utilization in sawmills [291]. A significant 
amount of research has been done using CT scanning of logs to map internal characteristics [292,293]. 
In addition to algorithms for knot detection [294–296], algorithms developed include pith detection 
[297], fiber orientation [298], spiral grain [299], decay recognition [300], and moisture distribution 
mapping [301]. Ultimately mapping internal log defects prior to sawing allows for improved lumber 
value recovery during processing [302–304]. Studies have also examined variation within and among 
stems, e.g., [305], verified light detection and ranging (LiDAR) measurements of wood quality 
assessment with verification by X-ray CT data [306], and prediction of stiffness of sawn products 
based on log scans [307]. Information obtained from CT scanning logs can enable decision making 
based on branch structure by tree geneticists, such as recent work by Song et al. [308] on the genetic 
architecture of branching traits. Such data are not only of great interest for sawing optimization, but 
could be a rich source of information in terms of silvicultural effects and within-tree variation, such 
as the work by Bjorklund and Petersson [309] on predicting knot diameter in Swedish Scots pine 
(Pinus sylvestris L.). 

In general, while CT and μCT systems are expensive, the technique provides significant 
flexibility and offers vast potential in improving our understanding of wood variability. Owing to 
the versatility of the instruments, it is difficult to quantify the time needed for scanning to allow 
comparison with other techniques, as it depends on the available equipment (detector read-out time), 

Figure 17. A micro-computed tomography (µCT) system in use at Ghent University [285]. 

Forests 2019, 10, x FOR PEER REVIEW 26 of 51 

 

rings can be done; however, unlike typical densitometry sample preparation is less important [270–
272]. Research at UGent-Woodlab has focused on utilizing μCT scanning for high-throughput 
scanning of increment cores [278,279]. The technique has been used for inter-annual [280–282] and 
intra-annual [283,284] tree growth studies. An example of a μCT scanner at the UGCT (UGent Centre 
for X-ray Tomography, www.ugct.ugent.be) is shown in Figure 17, and a cross-section scan through 
an increment core of oak is illustrated in Figure 18. 

 
Figure 17. A micro-computed tomography (μCT) system in use at Ghent University [285]. 

 
Figure 18. A 3D increment core of oak scanned at 35 μm resolution showing bark, early-wood vessels, 
and small and wide growth rings. 

μCT can be considered a tomographic microscopy technique, and therefore is a suitable tool for 
studying wood anatomy at the cellular level in three dimensions. Examples of its use include studies 
of the 3D structure of juvenile aspen [286], investigation of reaction wood in detail [287], and 
visualization of specific anatomical features [288–290]. 

One other important area for CT scanning is in evaluating knots, both through laboratory studies 
whereby branches are quantified and modelled, as well as utilization in sawmills [291]. A significant 
amount of research has been done using CT scanning of logs to map internal characteristics [292,293]. 
In addition to algorithms for knot detection [294–296], algorithms developed include pith detection 
[297], fiber orientation [298], spiral grain [299], decay recognition [300], and moisture distribution 
mapping [301]. Ultimately mapping internal log defects prior to sawing allows for improved lumber 
value recovery during processing [302–304]. Studies have also examined variation within and among 
stems, e.g., [305], verified light detection and ranging (LiDAR) measurements of wood quality 
assessment with verification by X-ray CT data [306], and prediction of stiffness of sawn products 
based on log scans [307]. Information obtained from CT scanning logs can enable decision making 
based on branch structure by tree geneticists, such as recent work by Song et al. [308] on the genetic 
architecture of branching traits. Such data are not only of great interest for sawing optimization, but 
could be a rich source of information in terms of silvicultural effects and within-tree variation, such 
as the work by Bjorklund and Petersson [309] on predicting knot diameter in Swedish Scots pine 
(Pinus sylvestris L.). 

In general, while CT and μCT systems are expensive, the technique provides significant 
flexibility and offers vast potential in improving our understanding of wood variability. Owing to 
the versatility of the instruments, it is difficult to quantify the time needed for scanning to allow 
comparison with other techniques, as it depends on the available equipment (detector read-out time), 

Figure 18. A 3D increment core of oak scanned at 35 µm resolution showing bark, early-wood vessels, 
and small and wide growth rings. 

µCT can be considered a tomographic microscopy technique, and therefore is a suitable tool for 
studying wood anatomy at the cellular level in three dimensions. Examples of its use include studies of 
the 3D structure of juvenile aspen [286], investigation of reaction wood in detail [287], and visualization 
of specifc anatomical features [288–290]. 

One other important area for CT scanning is in evaluating knots, both through laboratory studies 
whereby branches are quantifed and modelled, as well as utilization in sawmills [291]. A signifcant 
amount of research has been done using CT scanning of logs to map internal characteristics [292, 
293]. In addition to algorithms for knot detection [294–296], algorithms developed include pith 
detection [297], fber orientation [298], spiral grain [299], decay recognition [300], and moisture 
distribution mapping [301]. Ultimately mapping internal log defects prior to sawing allows for 
improved lumber value recovery during processing [302–304]. Studies have also examined variation 
within and among stems, e.g., [305], verifed light detection and ranging (LiDAR) measurements of 
wood quality assessment with verifcation by X-ray CT data [306], and prediction of stiffness of sawn 
products based on log scans [307]. Information obtained from CT scanning logs can enable decision 
making based on branch structure by tree geneticists, such as recent work by Song et al. [308] on the 
genetic architecture of branching traits. Such data are not only of great interest for sawing optimization, 
but could be a rich source of information in terms of silvicultural effects and within-tree variation, such 
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as the work by Bjorklund and Petersson [309] on predicting knot diameter in Swedish Scots pine (Pinus 
sylvestris L.). 

In general, while CT and µCT systems are expensive, the technique provides signifcant fexibility 
and offers vast potential in improving our understanding of wood variability. Owing to the versatility 
of the instruments, it is difficult to quantify the time needed for scanning to allow comparison with other 
techniques, as it depends on the available equipment (detector read-out time), scanning requirements 
(related to scan quality), acquisition mode, the type of object, and experimental set-up. 

7. Measurements That Are Rapid but not Nondestructive 

Measuring lignin content in wood is typically done via a multistep wet chemistry process following 
sample grinding and extraction. Lignin content can be determined using a weight-based approach 
(Klason), or a spectrophotometric approach (acetyl bromide) [310–312]. These techniques are laborious 
and a rapid alternative is the use of pyrolysis molecular-beam mass spectrometry (Py-MBMS) [313–316]. 
The technique rapidly quantifes the lignin content of wood and provides quantitative information such 
as S:G ratio. This technique still requires samples to be ground and extracted; however, measurement 
time per sample is a few minutes and thus is considerably faster than traditional methods. Linking 
Py-MBMS with NIR spectroscopy is particularly useful. 

Measuring the dimensions of pulped fbers or tracheids (referred hereafter as fbers) typically 
requires pulping a sample to remove lignin allowing it to be broken down (macerated) to its constituent 
fbers and then measuring the length and the width of the fbers. The most commonly used method 
for macerating fbers in a laboratory environment involves heating wood at elevated temperatures 
(60 ◦C) in a solution of glacial acetic acid (50%), hydrogen peroxide (15%), and water (35%) [317] 
for approximately 48 h. Following maceration, fbers are separated from the maceration solution 
using a Buchner funnel under vacuum then rinsed with water to a neutral pH. Using automated 
fber analyzers, the measurement of length and width of thousands of fbers can be done in less 
than 10 min [318–321]. Compared to manual measurement using a microscope, the technique is both 
rapid and reliable provided weighted length measurement is substituted for mean length to better 
differentiate between non-cut and cut fbers [320]. Fiber coarseness can also be obtained provided the 
weight of fbers is measured prior to the measurement of length and width. It should be noted that 
coarseness measured on fbers is different to SilviScan coarseness owing to loss of cell wall thickness 
and fber swell during pulping [322]. We note that measurement of fber length has been done on the 
tangential face of non-macerated samples [323,324]; however, few studies have utilized this technique 
since the introduction of automated fber analyzers. 

Further processing a radial sample into either individual rings, a selected number of rings, or 
EW and LW of an individual ring provides opportunity for numerous analyses. Dendrochronology 
studies have frequently used microtoming to prepare a section for microscopy imaging of cell 
dimensions [325,326]. Recently efforts have been made by the scientifc community to improve the 
microtomes available specifc for wood [327,328] as well as tools needed for analyzing images [329]. 

MFA determined by X-ray diffraction will provide the most representative measure for a section 
of wood in a pith–bark radial strip; however, other techniques exist, as reviewed by Huang et al. [330], 
and can be used when the MFA of an individual tracheid is of interest. The measurement of MFA 
using an X-ray diffraction system can be done on the tangential face of thin EW and LW samples, 
recent examples include Hein et al. [331], Cramer et al. [332] in loblolly pine, and Gorman et al. [333] 
for lodgepole pine (Pinus contorta Douglas). These studies and others demonstrate that MFA can be 
measured on commercially available X-ray diffraction instruments providing a rapid alternative to 
MFA measured via microscopy. However, compared to SilviScan or other purposely-adapted X-ray 
diffraction systems that allow for radial scanning, sample throughput is limited owing to laborious 
sample preparation along with the necessary work needed to keep individual samples organized. 
Individual rings, or their EW and LW components, can be cut and their wood density measured as an 
alternative to densitometry [331]. 
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8. Future Challenges and Opportunities for NDE of Wood Properties 

In the past 25 years the emergence of NDE tools have allowed a much greater understanding of 
wood property variation at multiple scales ranging from regional to within-ring. Various research 
studies, many cited in this manuscript, have demonstrated potential applications, which collectively 
have served to highlight the unique attributes of each technique. An understanding of these attributes 
coupled with clear objectives for resource assessment, tree improvement or wood quality related 
research will lead to the selection of the appropriate technique for a given application. Here we have 
created different scenarios (related directly to the various uses to which wood NDE has been applied) to 
explore the suitability of an NDE technique (or tools) for a given task. Table 2 summarizes feld-based 
tools and techniques, while lab-based systems are summarized in Table 3. It is our intention that both 
tables will clarify the choice of approach but when considering options there is much a potential user 
needs to learn and in Table 4 we have attempted to provide answers to what we think are some of the 
most important questions. 

Tremendous advances have been achieved in the application of NDE technologies to study trees 
in both native forests and plantations but for any operational NDE assessment for wood quality used 
routinely in commercial forestry it must have at least two characteristics. Firstly, it must have a strong 
cost–beneft ratio. The long-term nature of plantation forestry investment is inherently problematic 
given the upfront costs associated with tree planting and the delay in fnancial return. Therefore, 
the costs of assessing wood quality must have a demonstrable mechanism to provide commercial 
advantages; growers need an incentive to grow wood for more than harvestable volume. This is 
enhanced if the assessment NDE costs are sufficiently low. Secondly, the NDE method must have 
demonstrable and reproducible precision in assessing the target trait, particularly at the population 
mean level and preferably at the individual tree level. As new NDT tools are developed and tested for 
routine application it is critical that their performance be judged against these key criteria. 

Balancing cost of analysis with adequate resolution to successfully achieve a research or operational 
objective is critical in the application of NDE technologies. Depending on the information required the 
most expensive option may be the only real option available and how many samples can be analyzed 
for a specifed cost becomes important. We have not attempted to compare costs of analysis in detail as 
there are so many variables involved making a valid comparison impossible. Often cost estimates are 
for an in-house application of an “off-the-shelf” tool and do not include research and development 
costs or the costs associated with data management, record keeping or reporting. Likewise, a full 
cost recovery model (wages, overhead, and depreciation) is rarely considered and SilviScan is the 
only NDE option that we are aware of that incorporates all these factors when determining the fnal 
cost of analysis. If SilviScan did not operate under these constraints, pricing would be different but 
the price that is presently estimated for sample analysis is the most realistic cost estimate available 
of any NDE technique. Further, to make a proper comparison with other NDE techniques would 
involve the same cost recovery calculations as though they were performed on the same samples, 
at the same resolution and by the same personnel in the same organization. Resolution also makes 
comparison of NDE techniques (and costs) difficult. Many techniques are low resolution and provide 
no information on radial trends or within-tree variation. If, for example, low resolution data is required 
from SilviScan then the cost of analysis can be greatly reduced compared to the µm resolution required 
for dendrochronological studies. In addition, the properties determined can have a marked infuence 
on cost. Awareness of these issues are important when considering what NDE technique to employ. 
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Table 2. Applicability of different feld based non-destructive evaluation (NDE) tools to operational and/or research scenarios. 

Acoustics (TOF) 
(Velocity) 

Acoustics (Log) 
(Velocity) Pilodyn (Density) Resistograph (Density) Rigidimeter (Stiffness) 

Scenario 1: large-scale 
assessment of plantation 
resource (note end 
use—solid wood or pulp 
will determine properties 
of interest) 

Possible to assess regional 
variation in velocity if 
large number of trees 
across the landscape are 
sampled at the same stand 
age. 

Post-harvest, more 
consistent velocity 
assessment compared to 
TOF. 

Outer wood density only 
limits applicability. 

Increasingly used to 
assess regional density 
variation. Only feld tool 
giving radial variation 
data. 

Set-up time prohibitive to 
large scale-assessment. 

Scenario 2: examination 
of radial/longitudinal 
variation within trees and 
development of maps 
depicting within-tree 
variation 

N/A N/A N/A 
Potential to be used for 
examining within-tree 
variation. 

N/A 

Scenario 3: assessment of 
silvicultural treatments on 
wood properties 

Stand-level comparisons 
of silvicultural treatments. 

Stand-level comparisons 
of silvicultural treatments. N/A Potential to be used for 

stand-level comparisons. 
Potential to be used for 
stand-level comparisons. 

Scenario 4: utilization in 
breeding programs/tree 
improvement, (estimation 
of genetic parameters, ID 
of best families or clones) 

Provide ranking by 
velocity within stands. 
Heritability estimates for 
velocity. 

Heritability estimates for 
velocity. 

Assessment of outer wood 
density in young trees. 

Increasingly used in 
breeding programs as a 
surrogate for density, 
ranking. 

Provide ranking of 
individual tree stiffness. 
Genetic improvement of 
stiffness. 

Scenario 5: correlation 
with product properties 
e.g., segregation of 
high/low stiffness material 

N/A 

Moderate relationships 
between log velocity and 
lumber and veneer 
stiffness. 

N/A 
Potential to be used for 
correlation with product 
properties. 

N/A 
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Table 3. Applicability of different lab-based NDE tools to operational and/or research scenarios. 

SilviScan (SS) (Density, 
Stiffness, MFA, Cell 

Properties *) 

NIR Spectroscopy (Wood 
Chemistry, MFA, Mech 

Props) 

DiscBot (+NIR) (Wood 
Chemistry, MFA, Mech 

Props, Spiral Grain) 

Ultrasonics (Radial) 
(Velocity) 

CT Scanning + 

(Density) 

µCT Scanning 
(Density, Cell 
Dimensions) 

Scenario 1: large-scale 
assessment of plantation 
resource (end use—solid wood 
or pulp will determine 
properties of interest). 

High resolution and 
multiple properties. High 
cost vs. feld options may 
limit application. 

Only tool to assess PY 
variation. High cost (NIR 
calibration required) vs. feld 
options. 

Reduced resolution vs. SS 
but higher throughput. 
High cost but greater 
resolution vs. feld 
options. 

Reduced resolution 
but lower cost than 
SS. 

Reduced resolution 
but lower cost than 
SS. 

Overly detailed 
information not 
required for scenario. 

Scenario 2: examination of 
variation within trees and 
development of maps 
depicting within-tree variation. 

Data can examine 
within-tree variation at 
high resolution. Detailed 
tree maps. 

Lower resolution than SS. 
Can provide data for 2D or 
3D mapping wood property 
variation within trees. 

Lower resolution than SS. 
Can provide data for 3D 
mapping of wood 
property variation within 
trees. 

Lower resolution than 
SS. Can provide data 
for 2D or 3D 
mapping. 

Lower resolution than 
SS or densitometry. 
Can provide data for 
2D or 3D mapping. 

High-resolution 
measurements. Best 
suited for unique 
properties. 

Scenario 3: assess impact of 
silvicultural treatments on 
wood properties. 

Resolution/accuracy 
sufficient to detect 
treatment differences 
(within-ring) for all 
properties (MFA costly). 

Resolution/accuracy 
sufficient for juvenile wood 
ring-level responses, groups 
of rings in mature wood 
(successful use not reported). 

Resolution/accuracy 
sufficient for juvenile 
wood ring-level 
responses, groups of 
rings in mature wood 
(use not reported). 

Resolution/accuracy 
sufficient for juvenile 
wood ring-level 
responses, groups of 
rings in mature wood 
(use not reported). 

Resolution/accuracy 
sufficient for juvenile 
wood ring-level 
responses, groups of 
rings in mature wood 
(use not reported). 

Resolution/accuracy 
sufficient but use not 
reported. 

Scenario 4: 
dendrochronological study of 
environmental effects on wood 
properties. 

Resolution/accuracy 
sufficient. 

Resolution /accuracy not 
sufficient. Resolution not sufficient. Resolution not 

sufficient. 
Resolution not 
sufficient. 

Resolution/accuracy 
sufficient but use not 
reported. 

Scenario 5: utilization in 
breeding programs/tree 
improvement, (estimation of 
genetic parameters, ID of best 
families or clones). 

Estimation of genetic 
parameters, often at 
ring-level. 

Assessment of PY and 
extractives, genetic 
parameters for many wood 
properties provided 
calibration exists. 

Use not reported but 
could provide data for all 
properties measured. 

Use not reported but 
could provide data. 

Use not reported but 
could provide data. 

Use not reported but 
could provide data. 
Other tools better 
suited. 

Scenario 6: utilization in 
breeding programs for 
detection of genetic markers 
(QTL’s) and association 

Data used to detect 
markers for properties 
measured. 

Data used to detect markers 
for properties (NIR 
calibration required). 

Use not reported but 
could provide data for all 
properties measured. 

Use not reported but 
could provide data. 

Use not reported but 
could provide data. 

Use not reported but 
could provide data. 

mapping for wood properties. 

Note: MFA = microfbril angle, PY = pulp yield, mech props = mechanical properties and includes density, modulus of elasticity (stiffness) and modulus of rupture (strength). * Tracheid 
properties measured by SilviScan include: wall thickness, tangential diameter, radial diameter, coarseness, specifc surface area, and cell population. + CT scanning can be expensive but 
processing samples in batches would reduce cost. 
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Table 4. Summary of key features of each NDE tool. 

Availability (Yes = Tool 
on Market, No = 

In-House Solution) 

Ease of Setup (High 
= Easy to Setup, Low 
= Expert Required) 

Sample Preparation 
(Varies for Lab-Based 

Tools Based on Property) 

Number of Samples per Day 
(Approximate) Resolution 

Relative Cost (In-House 
Development = Higher 

Costs) 

In-feld 

Acoustics (tree) Yes High None 50 m Low 

2500 (logs cut to length) 
Acoustics (log) Yes High None 15 small trees (2 people, fell trees, m Low 

delimb) 

Pilodyn Yes High None 800 (young trees, bark intact) 
150 (trees older must debark) cm Low 

Resistograph Yes High None 300–400 (if entering tree ID’s) mm Low to Medium 

Rigidimeter Yes Medium None 50 m Medium 

Lab-based 

25–35 (intact cores, 1 mm steps) 

NIR spectroscopy Yes (but in-house 
calibration required) Low Moderate 1/variable (solid 

or milled wood) 
100 (drill swarf/shavings) 
25 (wood chips or cores) mm Medium (in-house 

calibration can be costly) 
Includes grinding and analysis 

SilviScan (SS) 
(operations separate) No Low Varies (polished surface for 

image analysis) (Assume 100 mm long sample) 

SS Cell imaging No Low Surface quality critical 15–20 µm High 

SS Densitometry No Low Moderate 1 30 (ring orientation tracked)–140 µm Medium 

60–100 (10 mm steps) mm Medium-High 
SS Diffractometry 

(MFA) No Low Moderate 1 15–30 (2 mm steps) 
4–9 (0.5 mm steps) 

mm 
mm 

High 
High 

1–2 (0.1 mm steps) mm High 

15 (20 µm steps) 
X-ray densitometry Yes Medium to Low Moderate 1 45 (60 µm steps) µm Medium 

Ring counting separate 

Acoustics (radial) No Low Moderate 1 60 mm Medium 

DiscBot (DB) No Low Moderate 1 50 mm High 

Spiral grain (DB) No Low Moderate 1 50 mm Medium 

CT Scanning Yes Medium to Low Minimal Several 1000 (mm resolution) mm Medium 

Micro CT Scanning Yes Medium to Low Minimal 150 (60 µm resolution) µm High 
1 Consistent preparation required. 
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The development of new applications for existing technologies is ongoing. Recent research 
on acoustic technologies by Fibre-gen (New Zealand) has resulted in an acoustic measurement 
system that can be mounted in a processor head of a harvesting machine. The system allows for 
the operational assessment of AV when harvesting timber, and during the log bucking decision 
process [334]. The system measures the TOF of an acoustic wave in the stem section held by the 
processor head, immediately following a cross-cut. With the AV displayed in the cab, operators can 
cut and sort higher value logs or segregate low AV logs based on user-defned velocity threshold 
levels [335]. Trial studies have demonstrated the potential for segregating logs with high AV for higher 
value structural markets such as LVL [335]. 

NIR spectroscopy presents an attractive option but its utilization is one of the most variable 
of all NDE tools as many companies produce instruments, calibrations are not readily transferable 
and the application of the technology inherently involves many developmental challenges that do 
not exist with other “off-the-shelf” tools. To ensure the best possible chance of success with this 
technology we recommended the development of “best practices”, e.g., Sandak et al. [109], that are 
consistently applied. We believe this would assist with wider operational adoption and would also 
allow information to be shared more easily (presently it is impossible owing to the use of different 
spectrometers and wood property assessment methodologies). The development of best practices for 
other tools may not be necessary but could prove to be benefcial. 

Hyperspectral imaging (employed by DiscBot) presents an exciting development in a broad range 
of wood related applications. While “traditional” NIR analysis has involved spot measurements 
“hyperspectral imaging combines spectroscopy and imaging resulting in three dimensional multivariate 
data structures (“hypercubes”). Each pixel in a hypercube contains a spectrum representing its light 
absorbing and scattering properties. This spectrum can be used to estimate chemical composition 
and/or physical properties of the spatial region represented by that pixel” [336]. As the hyperspectral 
spectral imaging system is an array of pixels the data can be used to produce images of spatial 
variability across the surface of the scanned sample (as per the glucose, galactan etc. disc maps shown 
in Figure 16). Data acquisition is also rapid allowing wood property information to be generated 
at a level that is unmatched by other instruments creating challenges for data storage, management 
and retrieval. While relatively new, the adoption of best practices in applying the technology and in 
reporting of experimental procedures would help others interested in employing the technique (at 
present a highly trained person is required to operate it). CT scanning presents similar challenges 
and while adopted in some industrial operations for saw log defect and knot detection, and the 
detection of clear wood, the potential exists for the technology to be more widely utilized. µCT 
scanners are becoming faster and well-established, when coupled with the ability to scan samples in 
batches and minimal sample preparation µCT promises to be routinely used in the future. Furthermore, 
hyperspectral imaging utilizing energy sensitive detectors to measure energies of incoming X-rays can 
be used for chemical analysis of samples and offers new avenues of research. An example is the dual 
energy approach (scanning at two energies which improves differentiating between features, in this 
case water in wood) recently showcased for moisture mapping of wood [337]. Finally, multi-spectral 
and multi-modal workfows (SilviScan and DiscBot are examples) either by combination of several 
different cutting-edge equipment [338] for a combination of optical, X-ray, and NIR imaging) or by 
combination in a single machine (Laforce et al. [339] combining X-ray, CT, and X-ray fuorescence) are 
currently being developed. 

NDE tools have presented new opportunities for tree breeding programs. Originally breeding 
programs targeted growth, form, and adaptation traits, but NDE has allowed the inclusion of wood 
properties, which depending on the breeding program, may extend to multiple selection criteria. NIR 
spectroscopy is often favored by breeding programs, as spectra can be calibrated against multiple 
variables. Lignin and pulp yield [340], and physical wood properties [341] calibrations are common, 
while recently extractives content calibrations have been developed at University of Canterbury [342] 
as an indicator of coast grey box (Eucalyptus bosistoana F. Muell.) wood durability. 
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Annual costs of wood properties assessments in a breeding program can be quite high, pushing 
for continuous reevaluation of NDE technologies. For example, in New Zealand, the Radiata 
Pine Breeding Company is replacing basic density obtained from increment cores by predictions 
based on the Resistograph. This change will eliminate both processing samples in a laboratory, 
and provide within-tree radial trends of wood density (Mark Paget, personal communication). A 
similar effort, to assess drill resistance and acoustic time of fight for assessing genetic variation six-
to nine-year old loblolly pine progeny tests has been undertaken by the NCSU Tree Improvement 
Program [343]. The need to minimize costs will be ongoing and presents opportunities for new research 
and development, for example the development of a feld tool that measures multiple properties 
simultaneously presents an exciting possibility. 

The fnal use of the information obtained by NDE tools will affect both the attitude towards 
assessment limitations and the acceptable resolution. For example, tree breeders most often need to 
assess large numbers of young trees (<1/3 rotation age) to rank their assessments. In that case, it is 
possible to sacrifce accuracy (a consistent over- or underestimate) if retaining enough precision to tell 
families and, better, individual trees apart. A single trait value per tree will commonly be sufficient 
(e.g., for pulp yield or basic density); however, there are traits for which a property gradient (e.g., 
wood stiffness) or critical value (e.g., ring at which the tree achieves a stiffness threshold) could be 
of interest. From a practical point of view, radial assessments every 10 mm, or even sparser, will be 
enough to estimate the gradients. In contrast, research projects looking at fundamental understanding 
will require higher resolution assessments. 

In summary, we have considered a number of instruments in this review that have been extensively 
employed by the scientifc community to improve our understanding of wood and fber quality, its 
variability with regard to genetics and the environment, and ways that silviculture can be used to 
manipulate it. Some of the authors here, as part of collaborative teams, have developed or are currently 
developing instruments reported on here. We acknowledge that developing any instrument is time 
consuming and difficult; Gene Wolfe wrote in the Book of the New Sun, “Here I pause. If you wish 
to walk no farther with me, reader, I cannot blame you. It is no easy road.” However, consider the 
measurement of MFA via microscopy versus using one of the SilviScan diffraction systems. Each 
SilviScan system can measure the MFA of 100 million to 20 billion cells per year. Suffice to say that the 
SilviScan system can measure more cells in one year than the total number of MFA measurements 
done using microscopy techniques over any number of years. Thus, we challenge those reading this to 
work towards the continued development of NDE instruments. 
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