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Abstract. Reliability calculations for lumber products ultimately depend on the statistical distributions
that we use to model lumber stiffness and strength. Fits of statistical distributions to empirical data allow
researchers to estimate the probability of failure in service. For these fits to be useful, the theoretical
statistical distributions must be good matches for the empirical lumber property populations. It has been
common practice to assume that the MOE of a grade of lumber is well-fit by a normal distribution, and the
MOR of a grade of lumber is well-fit by a normal, lognormal, or two-parameter Weibull distribution. Recent
theoretical results and empirical tests have cast significant doubt on these assumptions. The exact impli-
cations of the theoretical results depend on the distributions of full (mill-run) MOE and MOR populations.
Mill-run data have not yet appeared in the literature. Instead, studies have focused on subpopulations formed
by visual or machine stress rated (MSR) grades of lumber. To better understand the implications of the recent
theoretical results, we have investigated the statistical distributions of mill-run MOE and MOR data. An
ungraded mill-run sample of 200 southern pine 2 � 4 s produced at a single mill on a single day was
subjected to both nondestructive (transverse vibration and longitudinal stress wave) evaluation and static
bending tests to determine its MOE and MOR values. Various distributions were fit to the MOE and MOR
data and evaluated for goodness-of-fit. The results suggest that mill-run MOE might be adequately modeled
by a normal distribution or a mixture of two normal distributions, mill-run MOR might be adequately
modeled by a skew normal distribution or a mixture of two normals, and neither mill-run MOE nor mill-run
MOR is well-fit by a Weibull distribution.

Keywords: Mill-run lumber, Weibull distribution, normal distribution, modulus of elasticity, modulus of
rupture.
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INTRODUCTION

Reliability calculations for lumber products ul-
timately depend on the statistical distributions
that we use to model lumber stiffness and
strength. Fits of statistical distributions to em-
pirical data allow researchers to estimate the
probability of failure in service. For these fits
to be useful for reliability-based design, the
theoretical statistical distributions must be
good matches for the empirical lumber property
populations.

Although it has been common practice to assume
that the MOE of a grade of lumber is well-
modeled by a normal distribution, and the
MOR of a grade of lumber is well-modeled by
a normal, lognormal, or two-parameter Weibull
distribution (Green and Evans 1987; Evans et al
1997; ASTM 2010, 2015), recent theoretical
results and empirical tests have cast considerable
doubt on these assumptions.

The formation of a lumber grade begins with
a full lumber population that comprises not only
in-grade pieces but also every other piece of
lumber that is produced when logs are sawn.
(Colloquially, one might refer to this as a “mill-
run” population.) Verrill et al (2012, 2015) argue
that lumber grade subpopulations are formed by
selecting a subset of the full population based on
a grading (or predictor) variable that is positively
correlated with MOR. For example, in the case of
machine grading, a subpopulation can be chosen
based on a range of stiffness values. (This
statement is somewhat of an oversimplification,
as MSR grading also involves visual grade and
additional edge knot restrictions.) In the case of
visual grading, the predictor variable is implicit.
Following a particular set of grading rules,
a human grader classifies the lumber into quality
categories based on the presence or absence of
certain strength-reducing characteristics, appear-
ance attributes, and features related to fitness-for-
use (eg a sufficient nailing edge).

Verrill et al (2012, 2015) demonstrate with
mathematical proofs that the MOR population
associated with a specific grade of lumber will
not have the same theoretical form as the full

(mill-run) MOR population from which the
grade’s subpopulation is drawn. Instead, it will be
pseudo-truncated, exhibiting thinned or tightened
tails (Verrill et al 2012, 2015). They note that
such tightened tails can be observed in probability
plots of in-grade data (Verrill et al 2013, 2014).
They also demonstrate with computer simulations
that if one fits a non-pseudo-truncated distribution
(eg a Weibull distribution) to pseudo-truncated
data (eg pseudo-truncated Weibull data), proba-
bility estimates can be seriously in error (Verrill
et al 2013, 2014). Thus, there is strong theoretical
and empirical evidence that the MOR distributions
of grades of lumber are not Weibulls and that this
matters.

Verrill et al (2012, 2015) calculated the form of
pseudo-truncated MOR grade data under the
assumptions that the generatingMOE-MORmill-
run data have a bivariate Gaussian–Weibull
distribution (so the mill-run MOE distribution is
a normal and the mill-run MOR distribution is
a Weibull), and pieces of lumber are placed in
grades based on hard limits on MOE values or, as
in the case of visual grades, an implicit strength
predictor. Such a process yields MOR grade
distributions that are pseudo-truncated Weibulls.
But what if theMOEmill-run data are not normal,
or the MOR mill-run data are not Weibull? MOR
grade data will still have thinned tails but the
probability density function calculated by Verrill
et al (2012, 2015) will not be exactly right. Thus,
before strength distribution calculations can be
precisely made for lumber graded by MOE
values, we need to investigate the actual uni-
variate distributions of mill-run MOE and mill-
run MOR populations and their joint (bivariate)
distribution.

The empirical investigations described in this
article were designed to take a preliminary look at
these distributions. Here, we restrict ourselves to
the population of lumber produced at a single mill
on a single day. We realize that populations of
lumber produced over multiple days at multiple
mills in multiple regions are almost certain to
have a more complicated structure. However, we
felt that it made sense to begin by addressing the
fundamental question of whether a “simple”
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mill-run population could be modeled by
a “simple” distribution such as a normal or two-
parameter Weibull. Thus, in this article, we report
the MOE-MOR data and distribution fits for
a sample of 200 pieces of mill-run 2 � 4 lumber
obtained from a single mill on a single day.

MATERIALS AND METHODS

Sampling

Two hundred kiln-dried, rough southern yellow
pine (Pinus spp.) 2 � 4 s were procured from
a large regional sawmill in central Mississippi. The
dimension mill that donated the lumber has a single
line primary breakdown followed by a curve gang
resaw. It produces 2 � 4 through 2 � 12 pine
dimension lumber from its log supply. Its annual
production is approximately 200million board feet.
The mill is optimized to a large degree throughout
with the intention of maximizing board foot re-
covery from each log. The rough dry target di-
mensions for themill were 1.7� 3.7 inches (4.32�
9.40 cm). The nominal length of the specimens was
8 feet (244 cm) with approximately 2.5 cm of
overlength.

The mill managers (who were unaware of the
objectives of the research) were asked to pull 200
pieces of 2 � 4 lumber as the material was re-
moved from the kiln and taken off sticks. The
material was removed from the production line
after kiln-drying but before the planing and
grading stations. All material was of sufficient
character to make it through the optimizing edger
and trimmer without breaking. Subject only to
this condition, the quality of the pieces was un-
restricted (the pieces were drawn from the full
lumber population rather than from a single
grade), and the resulting specimens constituted
a full mill-run sample. Although the material was
not pulled in accord with a random sampling
scheme, it is believed that the mechanical shuf-
fling of lumber before the unscrambler and the
kiln stacker randomized the pieces. It can be
argued that the material represents a random
sample from several hours of a day’s production.

The material was transported to Mississippi State
University where it was planed on all four sides to

final dressed dimensions of 1.5 � 3.5 inches
(3.81 � 8.89 cm). Although the material was
pulled from production and tested as mill-run
lumber, the material was graded after planing
at Mississippi State University by a Southern Pine
Inspection Bureau–certified inspector to provide
additional data for future analyses. A visual grade
was recorded for each piece. Each board was la-
beled with a unique identification number and
premarked to indicate the randomized positioning
of the specimen within the third-point bending
fixture used in destructive testing. First, the po-
sitioning of the 59.5-inch (151.13 cm) test span
within the 8-foot long specimen was deter-
mined by a randomly generated number and
marked on the top edge of each test piece. This
action ensured random placement of the maximum
bending moment along the length of each speci-
men. Then, the corresponding load head positions
were marked. Finally, the lumber was stacked
unwrapped outside on wooden sawhorses under
a covered breezeway to protect it from the ele-
ments, aid in moisture equalization, and minimize
further drying that is often associated with interior
storage.

Testing

The elasticity (MOE) and strength (MOR) of each
test sample was assessed for subsequent analysis.
Each specimen was subjected to both non-
destructive evaluation and a static bending test.
The nondestructive testing devices used were
Fiber-gen’s Director HM200 (hereafter Director)
and Metriguard’s E-computer Model 340 (here-
after E-computer).

The Director is a handheld device that estimates
MOE by measuring the acoustic velocity (in feet
per second or meters per second) of a longitudinal
stress wave traveling through a specimen. For the
Director test, each specimen was supported in
a flatwise orientation by two sawhorses, thereby
allowing approximately 30 cm of specimen
overhang on each end. The device’s sensor was
held against one end of the specimen while a tap
was administered to the same end with a hammer.
The device generated an acoustic velocity output
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in ft/s (subsequently converted to m/s) from
which a dynamic MOE value in Pascals was
calculated with Eq (1), where E is elasticity, ρ is
density, and V is acoustic velocity (Ross and
Pellerin 1994). The final value was converted
to GPa and recorded for subsequent analysis.

E¼ ρV2 (1)

The E-computer device estimates MOE by
measuring the transverse vibration of each piece.
For the E-computer test, each specimen was
supported near its ends by two metal tripods. One
tripod is topped with a transducer connected by
a cord to a laptop computer. The transducer
measures the transverse vibration of the test
piece. All pieces were tested in a flatwise ori-
entation. The ends were aligned with the tops of
each tripod allowing for a 2.54 cm overhang at

each end. The tripod measured and recorded the
weight. Oscillation was initiated by lightly tap-
ping each specimen near its midlength. The
transducer sensed the vibration, and the laptop
generated a dynamic MOE output in million psi
(subsequently converted to GPa). The software
calculates the elasticity value based on Eq (2),
where E is MOE, f is the frequency of the
specimen’s vibration, W is the weight of the
specimen, S is the span, C is a constant, I is
the moment of inertia, and g is the acceleration
due to gravity (Ross and Pellerin 1994).

E¼ �
f 2 W S3

��ðC IgÞ (2)

Each static bending test was performed on an
Instron universal testing machine per the flexure
test method under ASTM D 198-15 (ASTM
2015) (Fig 1). The specimens were loaded in

Figure 1. A southern pine 2 � 4 undergoing a static bending test per ASTM D 198-15, flexure method.

WOOD AND FIBER SCIENCE, JULY 2018, V. 50(3)268



an edgewise orientation. Although third-point
loading and a span-to-depth ratio of 17:1 were
used (59.5 in, or 151.13 cm), the test pieces were
not trimmed to this length. Instead, the specimens
were placed in the fixture such that the randomly-
determined span boundaries and corresponding
load head placement markers lined up with the
reaction supports and load heads, respectively.
Whatever overhang there was on either end was
allowed to remain per ASTM guidance. The MC
of each piece at the time of testing was measured
from its face approximately halfway between the
load head markings with a Delmhorst J-88 pin-
type moisture meter to a depth of approximately
8 mm. Before the zeroing of the extensometer
(used to measure deflection), each specimen was
loaded with approximately 222.4 N (50 lbs.) to
ensure proper placement and seating of the load
heads. The test was then applied until full rupture.
The average length of time until rupture was
approximately 5 min.

The testing resulted in four datasets: MOE values
from the static bending test (hereafter abbreviated
“sb-MOE”) in GPa, MOR values from the static
bending test in MPa, MOE values from the Di-
rector test (hereafter abbreviated “Dir-E”) in GPa,
and MOE values from the E-computer test
(hereafter abbreviated “Ecomp-E”) in GPa. Be-
fore analysis, all MOR and MOE values for all
datasets were adjusted per ASTM D 1990-16
(ASTM 2016) to make them comparable at
a common 15% MC. The average MC before
adjustment was 13.3% (SD 1.88).

Statistical Methods

To identify statistical distributions that yielded
good models for stiffness andMOR in the mill-run
lumber population sampled, various candidate
distributions had to be fitted to each of the four
datasets and subsequently evaluated. We fit four
univariate models—two-parameterWeibull, three-
parameterWeibull, normal, andmixed normal—to
each of the stiffness measures.We fit six univariate
models—two-parameter Weibull, three-parameter
Weibull, normal, three-parameter beta, skew
normal, and mixed normal—to the MOR values.

The MOR dataset was left-skewed and this af-
fected our choice of potential models. (The p-value
for a [right-skewed] lognormal model was 7e-10.)
We also fit one bivariate model, a mixture of
bivariate normal distributions, to each of the
stiffness-MOR pairs. An analysis of this bivariate
model is provided in Verrill et al (2018). The
probability density functions of the univariate
distributions are provided in the Appendix. We
followed the fits with formal tests of goodness-
of-fit, and also created and studied diagnostic
plots—probability plots and histograms overlaid
with fitted probability density functions. Only
a subset of these plots appears in the current
article. A complete set can be found in Verrill
et al (2017).

The normal fits were performed in the R pro-
gramming environment (R Core Team 2013). The
maximum likelihood fits for the other distributions
were performed via Fortran programs written by
the authors. The Cramér–von Mises (CVM)
goodness-of-fit tests for normal distributions were
performed via the nortest package of Gross and
Ligges (2015) in the R programming environment.
The CVM test for a two-parameter Weibull dis-
tribution is based on sections 4.10 and 4.11 of
D’Agostino and Stephens (1986) andmakes use of
their Table 4.17 to calculate critical values for the
test. The simulation-based Cramér–von Mises
(CVM-sim) goodness-of-fit p-values were ob-
tained via a “parametric bootstrap” (a particular
type of computer simulation). The CVM test for
a two-parameterWeibull, the CVM-sim goodness-
of-fit tests, and the likelihood ratio tests were all
performed via Fortran programs written by the
authors. The source code for the Fortran programs
written by the authors can be found at http://
www1.fpl.fs.fed.us/mordist.html.

RESULTS

Parameter Estimates

Parameter estimates (represented by Greek letters
except for R, c, and p) for the fitted distributions
are shown in Table 1. The parameter p for
the mixed normal distribution represents the
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proportion attributed to the “leftmost” of the two
distributions that form the mixture.

Results of the Goodness-of-Fit Tests

The results of the goodness-of-fit tests for each
candidate distribution are summarized in the
following text. All p-values appear in Table 2.

Histograms with fitted probability density func-
tion overlays appear in Figures 2-5. Probability
plots for the MOR data appear in Figure 6.

SB-MOE

Weibull, Two-Parameter

A CVM test rejects the null hypothesis that
the data come from a two-parameter Weibull

Table 1. Parameter estimates.

Weibull,
two-parameter Weibull, three-parameter Normal Three-parameter beta Skew normal

Sc. Shape Sc. Shape Loc. Mean (Loc.) SD (Sc.) Shape Shape Scale Loc. Sc. Shape

Data λ̂¼ 1
=̂γ β̂ λ̂¼ 1

=̂γ β̂ ĉ µ̂ σ̂ α̂ β̂ R̂ ξ̂ ω̂ α̂

sb-MOE (GPa) 10.8 4.45 8.38 3.42 2.28 9.8 2.41 — — — — — —

Ecomp-E (GPa) 12.2 4.74 9.15 3.51 2.94 11.2 2.55 — — — — — —

Dir-E (GPa) 11.8 4.74 9.27 3.68 2.46 10.8 2.48 — — — — — —

MOR(MPa) 59.8 3.80 59.9 3.80 0.00 54.1 16.4 4.35 3.91 102.0 72.4 24.4 �2.46

Mixed normal

Loc. Sc. Prop. (p) Loc. Sc.

Data µ̂ 1 σ̂1 p̂ µ̂ 2 σ̂2

sb-MOE (GPa) 9.2 2.00 0.85 13.2 1.45
Ecomp-E (GPa) 10.5 1.38 0.23 11.4 2.76
Dir-E (GPa) 10.1 0.55 0.17 11.0 2.69
MOR(MPa) 48.0 17.9 0.59 62.9 8.34

All parameter values were estimated via maximum likelihood fits. The parameters are listed at the top of the table. The corresponding probability density functions
are provided in the Appendix. The type of parameter (location, scale, or shape) is indicated above the parameter. SD, standard deviation; Loc., location; Sc., scale;
Prop. (p), proportion of the left normal in the mixture. Subscript numerals 1 and 2 correspond to the left and right normals in the mixture. A dash indicates no parameter
was estimated. sb-MOE, static MOE from bending test; Ecomp-E, dynamic MOE from the E-computer test; Dir-E, dynamic MOE from the Director test.

Table 2. p-values from goodness-of-fit tests.

Tests

Data Distribution Simulation-based Cramér–von Mises p-values Cramér–von Mises p-values Likelihood ratio p-values

sb-MOE Weibull, two-parameter — 0.01 —

Weibull, three-parameter 0.032 — —

Normal 0.052 0.055 0.351
Mixed normal 0.08 — —

Ecomp-E Weibull, two-parameter — 0.01 —

Weibull, three-parameter 0.050 — —

Normal 0.279 0.252 0.463
Mixed normal 0.61 — —

Dir-E Weibull, two-parameter — 0.01 —

Weibull, three-parameter 0.002 — —

Normal 0.011 0.011 0.012
Mixed normal 0.67 — —

MOR Weibull, two-parameter — 0.01 —

Weibull, three-parameter 0.001 — —

Normal 0.0002 0.0002 0.001
Three-parameter beta 0.01 — —

Skew normal 0.65 — —

Mixed normal 0.66 — —

p-values of 0.01 and 0.001 may not be exact. (The true value could be smaller.) sb-MOE, static MOE from bending test; Ecomp-E, dynamic MOE from the
E-computer test; Dir-E, dynamic MOE from the Director test. A dash indicates that the test was not performed.
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distribution (p-value¼ 0.01) indicating that a two-
parameter Weibull is not a good fit for the data.

Weibull, Three-Parameter

A CVM-sim test of the null hypothesis that the
data come from a three-parameter Weibull dis-
tribution yields a p-value of 0.032, indicating that
a three-parameter Weibull is probably not a good
fit for the data.

Normal

CVM-sim and CVM tests of the null hypothesis
that the data come from a normal distribution

yield p-values of 0.052 and 0.055, respectively,
indicating that a normal distribution might not be
a good fit for the data. On the other hand,
a likelihood ratio test does not reject the null
hypothesis that a normal distribution is ade-
quate to model the data vs the alternative hy-
pothesis that a mixed normal is needed
(p-value ¼ 0.351).

Mixed Normal

A CVM-sim test does not reject the null hy-
pothesis that the data come from a mixed normal

Figure 2. Histograms of the sb-MOE data overlaid with fitted normal, two-parameter Weibull, three-parameter Weibull, and
mixed normal probability density functions.
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distribution (p-value ¼ 0.08), indicating that
a mixed normal distribution might be a reason-
able fit for the data.

ECOMP-E

Weibull, Two-Parameter

A CVM test rejects the null hypothesis that the
data come from a two-parameter Weibull distri-
bution (p-value ¼ 0.01), indicating that a two-
parameter Weibull is not a good fit for the
data.

Weibull, Three-Parameter

A CVM-sim test of the null hypothesis that the
data come from a three-parameter Weibull dis-
tribution yields a p-value of 0.050, indicating that
a three-parameter Weibull is probably not a good
fit for the data.

Normal

CVM-sim andCVM tests of the null hypothesis that
the data come from a normal distribution yield

Figure 3. Histograms of the Ecomp-E data overlaid with fitted normal, two-parameter Weibull, three-parameter Weibull, and
mixed normal probability density functions.
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p-values of 0.279 and 0.252, respectively, indicating
that a normal distributionmight be a reasonable fit for
the data. Also, a likelihood ratio test does not reject
the null hypothesis that a normal distribution is ad-
equate to model the data vs the alternative that
a mixed normal is needed (p-value ¼ 0.463).

Mixed Normal

A CVM-sim test does not reject the null hy-
pothesis that the data come from a mixed normal

distribution (p-value ¼ 0.61), indicating that
a mixed normal distribution might be a reason-
able fit for the data.

DIR-E

Weibull, Two-Parameter

A CVM test rejects the null hypothesis that the
data come from a two-parameter Weibull distri-
bution (p-value ¼ 0.01), indicating that a two-
parameter Weibull is not a good fit for the data.

Figure 4. Histograms of the Dir-E data overlaid with fitted normal, two-parameter Weibull, three-parameter Weibull, and
mixed normal probability density functions.
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Figure 5. Histograms of the MOR data overlaid with fitted normal, two-parameter Weibull, three-parameter Weibull, three-
parameter beta, skew normal, and mixed normal probability density functions.
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Figure 6. Probability plots of MOR data fitted with two-parameter Weibull, three-parameter Weibull, normal, three-
parameter beta, skew normal, and mixed normal distributions. (The best-fit two-parameter Weibull and best-fit three-parameter
Weibull are equivalent and represented by the same plot (a) above.) Ordered observed data (Y axis) plotted against expected scores
(X axis). The reference line y ¼ x indicates perfect fit.
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Weibull, Three-Parameter

A CVM-sim test of the null hypothesis that the
data come from a three-parameter Weibull dis-
tribution yields a p-value of 0.002 indicating that
a three-parameter Weibull is not a good fit for the
data.

Normal

CVM-sim and CVM tests of the null hypothesis
that the data come from a normal distribution both
yield p-values of 0.011, indicating that a normal
distribution is not a good fit for the data. Fur-
thermore, a likelihood ratio test rejects the null
hypothesis that a normal distribution is adequate
to model the data vs the alternative that a mixed
normal is needed (p-value ¼ 0.012).

Mixed Normal

A CVM-sim test does not reject the null hy-
pothesis that the data come from a mixed normal
distribution (p-value ¼ 0.67), indicating that
a mixed normal distribution might be a reason-
able fit for the data.

MOR

Weibull, Two-Parameter

A CVM test rejects the null hypothesis that the
data come from a two-parameter Weibull distri-
bution (p-value ¼ 0.01). This result is further
supported by the probability plot in Figure 6a.
Clear deviation of the plot from the reference line
in the figure indicates that a two-parameter
Weibull is not a good fit for the data.

Weibull, Three-Parameter

A CVM-sim test of the null hypothesis that the
data come from a three-parameter Weibull dis-
tribution yields a p-value of 0.001. This result is
further supported by the probability plot in
Figure 6a. (The best-fit two-parameter Weibull
and best-fit three-parameter Weibull are equiva-
lent and represented by the same plot.) Clear

deviation of the plot from the reference line in the
figure indicates that a three-parameter Weibull is
not a good fit for the data.

Normal

CVM-sim and CVM tests of the null hypothesis
that the data come from a normal distribution both
yield p-values of 0.0002. This result is further
supported by the probability plot in Figure 6b.
Clear deviation of the plot from the reference line
in the figure indicates that a normal distribution is
not a good fit for the data. Also, a likelihood ratio
test rejects the null hypothesis that a normal
distribution is adequate to model the data vs the
alternative that a mixed normal is needed (p ¼
0.001). These results suggest that a mixed normal
is likely a better fit than a normal.

Three-Parameter Beta

A CVM-sim test rejects the null hypothesis that
the data come from a three-parameter beta dis-
tribution (p-value ¼ 0.01). This result is further
supported by the probability plot in Figure 6c.
Clear deviation of the plot from the reference line
in the figure indicates that a three-parameter beta
is not a good fit for the data.

Skew Normal

A CVM-sim test does not reject the null hy-
pothesis that the data come from a skew normal
distribution (p-value ¼ 0.65). This result is
further supported by the probability plot in
Figure 6d. Relative conformity of the plot to the
reference line in the figure indicates that a skew
normal distribution might be a reasonable fit for
the data.

Mixed Normal

A CVM-sim test does not reject the null hy-
pothesis that the data come from a mixed normal
distribution (p-value ¼ 0.66). This result is further
supported by the probability plot in Figure 6e.
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Relative conformity of the plot to the reference line
in the figure indicates that a mixed normal dis-
tribution might be a reasonable fit for the data.

RESULTS SUMMARY

The goodness-of-fit tests suggest that for the mill-
run lumber population sampled, sb-MOE,
Ecomp-E, and Dir-E are not distributed as two-
or three-parameter Weibulls. The tests do not rule
out the possibility that a single normal distribution
might be a suitablemodel for sb-MOE and Ecomp-
E, and that a mixed normal distribution might be
a suitable model for all threemeasures of elasticity.

The goodness-of-fit tests further suggest that for
the mill-run lumber population sampled MOR is
not distributed as a two- or three-parameter
Weibull, a normal, or a three-parameter beta.
The tests do not rule out the possibility that
a skew normal or a mixed normal might be
a suitable model for the MOR distribution.

DISCUSSION

In the Introduction we discussed the fact that the
exact implications of the pseudo-truncation as-
sociated with the formation of a visual or MOE-
truncated grade of lumber will depend on the
form of the mill-run population that is being
pseudo-truncated. The experiment reported in
this article was intended to constitute an initial
investigation into the statistical forms of mill-run
MOE and MOR distributions.

For the specific mill under consideration in the
current article, we have found that the distribu-
tions of mill-run MOE measures might be normal
or mixed normal, whereas the distribution of mill-
run MOR might be skew normal or mixed nor-
mal. Thus, this initial investigation suggests that
the MOE distributions of MOE-truncated grades
of lumber might be truncated normal or truncated
mixed normal, and the corresponding distribu-
tions of MOR might be pseudo-truncated skew
normal or pseudo-truncated mixed normal.

In principle, the probability density functions of
the proposed pseudo-truncated distributions can
be calculated and fit in a manner similar to that

reported for pseudo-truncated Weibulls in Verrill
et al (2012, 2015). (For example, Verrill et al
(2018) assume a MOE-MOR distribution that is
a mixture of two bivariate normals, and derive the
distribution of the corresponding pseudo-
truncated MOR distribution.)

At this point, we are not suggesting that the
standards community should adopt pseudo-
truncated distributions as the basis for reliabil-
ity calculations. Before this could be contemplated,
studies of additional mills in additional regions at
additional times must be made to determine
whether mill-run stiffness and strength distribu-
tions are, in any sense, stable.

We are currently engaged in such research. How-
ever, given the fact that actual distributions may be
complicated mixtures of base distributions that vary
frommill to mill, region to region, time to time, size
to size, and species to species, it may be that no
satisfactory theoretical form(s) can be identified to
form the basis of improved reliability models.

We suspect that ultimately, if reliability engineers
want to obtain accurate and precise reliability
estimates, they will need to develop detailed
predictive models that yield real-time, in-line
estimates of lumber strength based on measure-
ments of stiffness, specific gravity, knot size and
location, slope of grain, and other strength
predictors.

CONCLUSIONS

The experiment reported in this article was
intended to constitute an initial investigation into
the statistical forms of mill-run MOE and MOR
distributions. For the specific mill under con-
sideration in the current article, the results
showed that the distributions of mill-run MOE
measures might be normal or mixed normal,
whereas the distribution of mill-run MOR might
be skew normal or mixed normal. Thus, this
initial investigation suggests that the MOE dis-
tributions of MOE-truncated grades of lumber
might be truncated normal or truncated mixed
normal, and the corresponding distributions of
MOR might be pseudo-truncated skew normal or
pseudo-truncated mixed normal.
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APPENDIX—PROBABILITY DENSITY FUNCTIONS

NORMAL DISTRIBUTION

The normal probability density function is
given by

f ðx; µ; σÞ¼ 1ffiffiffiffiffi
2π

p 1
σ
exp

�
�ðx�µ Þ2

.�
2σ2

��

for x 2 (�‘, ‘), where µ is the mean and σ is the
standard deviation. This distribution is denoted by
the notation N(µ, σ2).

MIXED NORMAL

In this article, a “mixed normal distribution”
refers to a mixture of two normal distributions.
Such a mixture results when specimens are drawn
with probability p from a N(µ1, σ12) distribution
and with probability 1-p from a N(µ2, σ22) dis-
tribution. In this case, the probability density
function is given by
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f ðx; µ 1; σ1; p; µ 2; σ2Þ
¼ p � 1ffiffiffiffiffi

2π
p 1

σ1
exp

�
�ðx� µ 1Þ2

.�
2σ21

��

þð1� pÞ� 1ffiffiffiffiffi
2π

p 1
σ2

exp
�
�ðx� µ 2Þ2

.�
2σ22

��

for x 2 (�‘, ‘).

TWO-PARAMETER WEIBULL

The two-parameter Weibull has probability
density function

f ðw; γ; βÞ¼γββwβ�1exp
�
�ðγwÞβ

�

for w 2 ½0;‘Þ, where β is the shape parameter and γ
is the inverse of the scale parameter.

THREE-PARAMETER WEIBULL

The three-parameter Weibull has probability
density function

f ðw; γ; β; cÞ¼ γββðw� cÞβ�1exp
�
�ðγðw� cÞÞβ

�

for w 2 ½c;‘Þ, where β is the shape parameter, γ
is the inverse of the scale parameter, and c is the
location parameter.

THREE-PARAMETER BETA

The three-parameter beta has probability density
function

f ðx; α; β;RÞ ¼ xα�1 ðR� xÞβ�1

Rαþβ�1
� Γðαþ βÞ

ΓðαÞΓðβÞ
for x 2 ½0;R�, where Γ denotes the gamma function.

SKEW NORMAL

The skew normal distribution has probability
density function

f ðx; ξ;ω; αÞ ¼ 2
ω
�f

�
x� ξ
ω

	
�Φ

�
α
�
x� ξ
ω

		

for x2ð�‘;‘Þ, where f denotes the probability
density function of a standardized normal, Φ de-
notes the cumulative distribution function of
a standardized normal, and ξ;ω; and α are the pa-
rameters of the skew normal distribution.
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