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Within-grade variability in mechanical properties for visually graded lumber has led to increased deployment 
of nondestructive testing (NDT) methods, even though the relationships between static bending and NDT-
predicted values are often highly variable. Dynamic modulus of elasticity (MOEdyn) was measured using two 
acoustic velocity instruments and one transverse vibration instrument, along with specific gravity, for 819 
pieces of visually graded loblolly pine lumber. Static modulus of elasticity (MOE) and bending strength (Fb) 
were measured via destructive testing. The probability of meeting design values was compared using (1) nor-
mal distribution linear and power regression models and (2) binomial distribution logistic regression models; 
the parameters of both models were fit using maximum likelihood estimation. For the normal distribution 
models, the standard error of the estimate, which ranged from 1.28 to 1.82 GPa for MOE and 4.47 to 5.07 MPa 
for Fb, was incorporated into predictions in order to calculate the probability of meeting design values. At 50 
per cent probability, transverse vibration MOEdyn values of 10.9 (normal) and 11.0 (binomial) GPa would meet 
the No. 2 MOE design value (9.7 GPa). At probabilities of 75 per cent and 95 per cent, the required values were 
12.1 and 13.8 (normal) GPa and 12.0 and 13.5 (binomial) GPa, respectively. The normal and binomial 
approaches required similar NDT values to meet thresholds, although the advantage of the normal approach 
is that the regression parameters do not need to be recalculated for each threshold value, but at the expense 
of increased model complexity. 

Introduction 

Evaluation of wood properties often relies on nondestructive 
testing (NDT) methods that can determine the suitability of the 
material for a particular end use without diminishing either its 
properties or its product performance (Ross, 2015a). For struc-
tural lumber produced in North America, visual qualitative 
inspection of knots and other characteristics (e.g. wane and 
shakes) have long been used to determine lumber grades (ASTM 
D245, 2011); however, as variability in modulus of elasticity 
(MOE; i.e. stiffness) and modulus of rupture (MOR; i.e. strength) 
is high within these qualitatively determined lumber grades 
(Dahlen et al., 2013), quantitative NDT methods are increasingly 
being employed (Briggs, 2010; Baillères et al., 2012). Recent 
technological improvements have allowed quantitative systems 
to become more reliable at sorting lumber into similar categor-
ies than is possible with qualitative systems (Wang et al., 2008; 
Pellerin and Ross, 2015). In both types of systems, lumber is 
sorted into a grade category containing theoretically similar 
pieces that carry specific design values as determined using 
mechanical destructive testing (ASTM D4761, 2013; ASTM D198, 
2015). For any grading method using NDT, there is a need to 

understand the relationships between NDT-predicted and static-
tested mechanical properties. The design values for MOE are at 
the mean level of the population, while those for bending 
strength (Fb) are at the fifth percentile level, with the Fb values 
being the MOR values reduced for safety, uncertainty and for 
performance over time (ASTM D1990, 2016). 

The common NDT systems for lumber grading include those 
that evaluate either density or MOE (Carter et al., 2006; ALSC, 
2014; Galligan et al., 2015; Ross, 2015b). Density, often used 
interchangeably with the term specific gravity (SG), is an import-
ant physical property for wood that is measured in production 
environments using X-rays (Galligan et al., 2015). Dynamic MOE 
(MOEdyn) can be determined using different methods; when 
determined by transverse vibration (MOEdyn.TV), it is calculated 
as follows: 

f W2 L3 f2 3 

MOE r r ML
dyn.TV = =  (1 )

kMOIg kMOI 

where the unit for MOEdyn.TV is Pa, fr is the resonant frequency 
(Hz), W is the beam weight (N), L is the span length (m), k is a 
constant (2.46) for a beam simply supported at its ends for free 
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vibration, MOI is the moment of inertia (m4) and g is the accel-
eration due to gravity (9.80665 m s−2) (Ross, 2015b). The 
equation is simplified by dividing W (beam weight) by g (acceler-
ation due to gravity) to get mass (M) (kg) in the numerator. The 
MOEdyn.TV units in Pa are converted to GPa to allow reporting 
without scientific notation and to match reported values of GPa 
in the literature. MOEdyn determined by acoustic velocity 
(MOEdyn.AV) is calculated as follows: 

2
dyn.AV = ρAV ( )  MOE 2 

where the unit for MOEdyn.AV is Pa, ρ is the density (kg m−3) and  AV  
is the acoustic velocity (m s−1) (Wang, 2013); again, the MOEdyn.AV 

units are converted to GPa. The acoustic velocity is determined 
from the frequency of numerous acoustic pulses as follows: 

AV = 2f L  ( )30 

where AV is weighted mean acoustic velocity (m s−1), f0 is the 
first harmonic frequency of an acoustic wave signal (Hz) and L is 
the length (m) of the material (Wang, 2013). Applying both 
techniques, Yang et al. (2015) found good relationships between 
static MOE and both MOEdyn.TV (R

2 = 0.86, root mean square 
error (RMSE) = 0.98 GPa) and MOEdyn.AV (R

2 = 0.82, RMSE = 
1.12 GPa) for southern pine No. 2 grade lumber. In addition to 
evaluating lumber, NDT methods are frequently employed in the 
field in an attempt to segregate low-quality material before pro-
cessing (Wessels et al., 2011b; Moore et al., 2013; Murphy and 
Cown, 2015; Bérubé-Deschénes et al., 2016; Tippner et al., 2016; 
Butler et al., 2017). Paradis et al. (2013) utilized the time-of-
flight acoustic technique on standing trees to identify those 
trees likely to yield lumber with high stiffness. Wang et al. 
(2013) combined information on log diameter and position 
along the stem with acoustic velocity to better predict lumber 
MOE and visual grade yield in Douglas-fir (Pseudotsuga menziesii 
(Mirb.) Franco). An acoustic method has also been adopted to 
assess seedlings to screen families with high wood stiffness 
(Emms et al., 2012, 2013). 

Although NDT techniques have been widely used to evaluate 
lumber (Grabianowski et al., 2006; Ross, 2015a), the relation-
ships between NDT-predicted values and the corresponding sta-
tic bending values can be highly variable (Yang et al., 2015). As 
a result, there is uncertainty associated with the prediction of 
mechanical properties. Thus, there is a need to establish the 
degree of confidence in the NDT-predicted values, and this can 
be done through the determination of confidence intervals that 
are likely to include the true value (e.g. a 95 per cent confidence 
interval). When applying an unbiased model, there is a 50 per 
cent probability that the expected static value will be lower 
than the predicted mean value and the same probability that it 
will be higher. The specified confidence level can be adjusted 
accordingly for applications that tolerate either higher or lower 
uncertainty. For example, a floor assembly composed of mul-
tiple members may tolerate a higher level of uncertainty, 
whereas the outermost tension layer in an unbalanced glulam 
beam, which is subjected to the highest stresses, may require a 
lower level of uncertainty (Moody, 1977). 

The Southern Pine Inspection Bureau (SPIB) implemented a 
monitoring program whereby lumber MOEdyn.TV was used to 
determine potential changes in the visually graded southern 

pine lumber resource (Kretschmann et al., 1999). The observed 
decline in southern pine lumber quality was rationalized to be a 
consequence of the increasing percentage of juvenile wood in 
the timber resource (Kretschmann et al., 1999; Larson et al., 
2001; Clark et al., 2008). For southern pine visually graded lum-
ber, the impact of the decline in mechanical properties was rea-
lized in 2013 after the design values for southern pine were 
decreased (ALSC, 2013). However, this decline was not detected 
via the monitoring program (SPIB, 2011), likely due to differences 
between MOEdyn and static MOE values. Calculated dynamic 
properties are higher than measured static properties due to the 
effect of creep in the static test that is not present in dynamic 
testing (Divós and Tanaka, 2005). Thus, when comparing NDT and 
static values, these differences should be accounted for. 

The primary goals of this study were therefore (1) to quantify 
the relationship between both the static MOE and the character-
istic bending strength (F  b) and NDT methods (SG, MOEdyn.AV and 
MOEdyn.TV) in loblolly pine (Pinus taeda L.) dimension lumber 
(38 mm thickness) and (2) based on these relationships, to find, 
for a given probability, the NDT values needed to meet specific 
design value thresholds at 50 per cent, 75 per cent and 95 per 
cent confidence. The probability of meeting a specific threshold 
was determined using a normal distribution approach employing 
linear and power regression models, and a binomial distribution 
approach using logistic regression models. The parameters for 
both distributions were fit using maximum likelihood estimation 
(MLE). The information generated in this study could be incorpo-
rated into prediction equations used by industry to determine, 
with increased confidence, whether lumber properties predicted 
using NDT methods meet design value requirements. 

Materials and methods 

Origin of lumber samples 

The lumber data used in this study originate from a sawmill study 
described by Butler et al. (2016). A total of 93 loblolly pine trees from 
five stands were harvested in 2013 from the Lower Coastal Plain near 
Brunswick, Georgia, USA. The productivity of the sites was high; site index 
at base age 25 years (SI25) ranged from 25.3 to 27.4 m. Sample trees 
were selected from across the diameter distribution range of each 
stand. A chainsaw was used to fell, de-limb and then buck each sample 
tree into lumber length (5.2 m) logs numbered 1 (butt), 2 (middle) and 3 
(top). The logs were transported to the participating mill (Hoboken, GA, 
USA) and processed into dimension lumber 38 mm (thickness) by 
89mm (2 × 4), 140 mm (2 × 6), 184 mm (2 × 8) and 235 mm (2 × 10) 
(width). The lumber was dried, planed and visually graded into No. 1 and 
better (No. 1), No. 2 and No. 3 grade categories by certified graders from 
the cooperating mill. Altogether, the 244 logs yielded a total of 819 
pieces of lumber after grading (Table 1); for the 2 × 4, 2 × 6, 2 × 8 and 
2 × 10 sizes, the respective counts of lumber pieces were 115, 295, 343 
and 66. Separating the lumber by grade gave 157, 593 and 69 pieces for 
the No. 1, No. 2 and No. 3 visual grades, respectively. 

NDT and destructive testing procedures 

The lumber was transported to the University of Georgia’s wood quality 
laboratory in Athens, GA, USA, for testing. The SG of the lumber was cal-
culated using oven dry weight and the volume determined from the 
dimensions at ambient conditions. The average moisture content of the 
lumber was 11.2 per cent with a range from 8.5 to 17.2 per cent. The SG 
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Table 1 Total number of pieces by grade for 38-mm thick by 89-mm 
(2 × 4), 140-mm (2 × 6), 184-mm (2 × 8) and 235-mm (2 × 10) width 
lumber used in this study. 

Grade Size 

89 mm 140 mm 184 mm 235 mm Total 

No. 1 
No. 2 
No. 3 
Total 

25 
74 
16 

115 

36 
230 
29 

295 

71 
251 
21 

343 

25 
38 
3 

66 

157 
593 
69 

819 

values were then corrected to 15 per cent moisture content (oven dry 
weight, volume at 15 per cent moisture content) in accordance with a 
corresponding adjustment for mechanical properties (ASTM D1990, 
2016). The longitudinal acoustic velocity was measured using two differ-
ent instruments – the Fibre-gen Hitman HM200 (AVHM) (Fibre-gen, 
Christchurch, New Zealand) and the Fakopp Portable Lumber Grader 
(PLG) (AVPLG) (Fakopp BT, Agfalva, Hungary). Both systems calculate the 
acoustic velocity (m s−1) using the first harmonic frequency of a reson-
ant wave (Wang, 2013) and thus were expected to yield similar results. 
MOEdyn was calculated for each instrument (MOEdyn.HM and MOEdyn.PLG) 
using the density and the acoustic velocity determined using equa-
tion (2). The MOEdyn.TV was measured flatwise (i.e. with the beam depth 
equal to the thickness dimensions of the lumber) using a Metriguard 
340 E-Computer (Metriguard, Pullman, WA, USA) (ASTM D6874, 2012). 
The E-Computer measures the density of the material and the resonant 
frequency for each sample, then calculates MOEdyn.TV using equation (1). 
Because both sample size and length influence the resonant frequency, 
the resonant frequency was standardized by size and length to allow 
comparisons between sizes. To do this, the measured frequency for each 
sample was divided by the calculated mean frequency from each size 
and length (2 × 4: 0.011 Hz, 2 × 6: 0.023 Hz, 2 × 8: 0.038 Hz, 2 × 10: 
0.059 Hz); these frequencies corresponded to the No. 2 design value 
(9.7 GPa) as the MOEdyn.TV value, the length for each test (2 × 4: 1.81 m, 
2 × 6: 2.69m, 2 × 8: 3.45m, 2 × 10: 4.30 m) and the mean weight for 
each size (2 × 4: 1.81 N, 2 × 6: 4.15 N, 2 × 8: 7.02 N, 2 × 10: 11.25 N). 

Each piece of lumber was then tested in static edgewise destructive 
bending (ASTM D4761 2013; ASTM D198, 2015) using  a four-point bend-
ing setup in ‘third-point’ loading (load heads positioned one-third of the 
span distance from the reactions) on a universal testing machine. The 
span-to-depth ratio was 17:1 (2 × 4: 1511–89mm, 2 × 6: 2375–140 mm, 
2 × 8: 3131 –184 mm, 2 × 10: 3994–235 mm). Following testing, the 
mechanical properties were adjusted to 15 per cent moisture content 
(ASTM D1990, 2016) and the MOR values were also adjusted to account 
for design uncertainty and differences in strength given loading time to 
give the characteristic bending strength at the 2 × 8 size ( Fb) (Evans et al., 
2001; ASTM D1990, 2016; Butler et al., 2016). Results were compared 
with the design values for southern pine, with the design values for MOE 
being the mean values for visually graded southern pine lumber, i.e. 
11.0 GPa (No. 1), 9.7 GPa (No. 2) and 9.0 (No. 3), respectively (ALSC, 2013). 
The design values for Fb are the nonparametric fifth percentile values 
determined at 75 per cent confidence and are 8.6 MPa (No. 1), 6.4 MPa 
(No. 2) and 3.6 MPa (No. 3), respectively (ALSC, 2013; ASTM D1990, 2016). 

Statistical analyses 

All statistical analyses were performed and associated graphics pro-
duced in the R statistical programming environment (R Core Team, 
2017) with the RStudio interface (RStudio, 2017) and several R packages 

(Sarkar, 2008; Chang, 2014; Auguie, 2016; Wickham and Francois, 
2016). Boxplots of lumber variability by tree nested within stand were 
constructed for SG, MOE and Fb. Pearson correlation coefficients were 
calculated between different NDT property values and between the NDT 
property values and the static values. 

Two approaches were used to develop models for predicting static 
values for MOE and Fb. The first employed linear and power models fitted 
using the normal distribution and the second approach employed logis-
tic regression models fitted using the binomial distribution. For both 
model types, MLE was used to find the parameters for each model. The 
MLE methodology finds the most likely parameters, where possible para-
meters are compared with other sets of parameters within a recurrent 
optimization framework for a particular density function, for example, 
the normal distribution (Millar, 2011). For the linear and power model 
approach, initial models were developed to predict static MOE or Fb 

using SG and MOEdyn values (i.e. MOEdyn.HM, MOEdyn.PLG and MOEdyn.TV). 
The base regression models were linear in form: 

2~ (β  + β  x, σ )y N  0 1  ( )  4 

where y follows a normal distribution (N), β0 is the model intercept, β1 is 
the slope coefficient, x is a vector of the independent variables (NDT 
method), σ2 is the variance or the mean squared error, and thus σ is the 
standard error of the estimate. Assumptions of normality were checked 
using a Kolmogorov–Smirnov test and by visual assessment of quantile– 
quantile normal graphs. Where deviations from normality were 
detected, a revised model was fit with a power transformation to 
improve normality: 

λ 2~ ((N β + β )  σ )y x ,0 1  ( )  5

where λ is a scaling coefficient. The starting values for the model para-
meters were estimated using the linear model function in R. The model 
parameters and σ were then explicitly estimated through MLE. The prob-
ability of any measurement (xi) given an expected value (μi) and σ was 
calculated from the normal distribution density function: 

⎛ ⎞
( )6

where xi is a specific value of the independent variable, μi is the expected 
value and σ the standard error of the estimate; the expected value (μi) ± 
twice the standard error of the estimate contains approximately 95 per 
cent of the target population. Equation (6) identifies the likelihood of 
one observation given the expected value and the standard error of the 
estimate. In order to find the likelihood for the entire dataset, the prod-
uct of the individual likelihoods was maximized, which is the summation 
of the natural logarithms of every likelihood value (log-likelihood) (Millar, 
2011). An updated set of regression parameters (β0, β1 and λ, if used) 
and the standard error of the estimate (σ) of the model were then found 
using an interactive optimization process using the objective function: 

( )7 

where max l is the maximum log-likelihood, f(.) is the linear function 
(y = β0 + β1x, or  y = (β0 + β1x)λ), σ is the standard error of the estimate, 
xi is the value for each independent variable, yi is the value of the 
dependent variable and ln is the natural logarithm. The parameter 
estimates were obtained using the quasi-Newton method (Broyden– 
Fletcher–Goldfarb–Shanno (BFGS)) implemented using the general 
purpose optimization function in R. The  confidence intervals for the 
parameters were calculated from the model’s Hessian matrix (second-order 
partial derivatives of the equation with respect to the parameter), where 
the square root  from  the product  of  the inverse Hessian and the identity 
matrix were found using the delta method (Ver Hoef, 2012). The models 

1  ( − μ )2 xi i2( |μ  σ ), = exp ⎝⎜− 2 ⎠  f xi i 22σ   2σ 

n ⎡ 1 ⎛ ( ( ) −  )  x 2 ⎞⎤ 
( ( ) σ|x y  i) = ∑ ln ⎣⎢ exp ⎝⎜− 2 ⎠ ⎦⎥ max l f . , i, 

f . i 

2 
i 1  2σ   2σ = 
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were compared across NDT methods using the maximized sum of the loga-
rithms (where a higher number indicates a better model) and Akaike’s 
Information Criteria (AIC) (Akaike, 1974) (where a lower number is better). 

After selecting the optimized parameters for the regression model 
for each NDT variable, the probability of achieving a certain threshold at 
a given confidence level was calculated by integrating the likelihood 
over the desired level of certainty. The probability (P) of  xi being above a 
certain design value threshold (ythreshold) is a function described by the 
normal cumulative function: 

2P xi (  μ σ )  ( ≥ ythreshold ) = Φ xi; ,  ( )  8 

where P is the probability and   is the normal cumulative function, 
which is calculated by integrating the normal distribution function from 
xi to infinity (∞): 

∞ 
2 2

i ∫ x , d ( )  Φ(  μ σ )x ; ,  = N( |μ σ )  x 9 
xi 

Combining equation (7) and equation (9) results in: 

2( ( ) −  )  i∞ 1 ⎛ f . x ⎞ 
2

i : . ,  = ∫ exp ⎝⎜− 2 ⎠  ( )10Φ(x f ( ) σ )
i 2σ  x 2 2σ 

where the parameters are defined as previously. Plots showing the rela-
tionship between the dependent variables (MOE and Fb) and the inde-
pendent variables (the NDT-derived values) were produced. Regression 
mean confidence intervals for each model were calculated using the 
function’s gradient estimated from a Taylor series expansion making use 
of the previously estimated Hessian matrix. 

For the binomial distribution approach, using logistic regression ana-
lysis, the probability (P) of meeting (pass = 1) or not meeting (fail = 0) 
the design values for a given value of a dependent variable was calcu-
lated using the inverse-logit function: 

exp ( )PP = 
y 

( )11 
exp ( ) +  y 1P 

where P is the probability and yP is the predicted value calculated from: 

= β  + β  X ( )  y 12P 0 1 

where β0 and β1 are the regression parameters specific to the binomial 
regression model (and thus not the same as the regression parameters 
estimated using the linear and power models). The probability and 
regression parameters are specific to each design value and thus the 
model is fit for each value. The starting β0 and β1 parameters were cal-
culated using a generalized linear model with the binomial family and a 
logit link, and then an updated set of parameters was explicitly esti-
mated through MLE. For the whole dataset, the likelihood that the β0 

and β1 parameters make the observed data most likely to occur is the 
product (∏) of the likelihood for each individual observation: 

n 
k  N k  −(β β ) , =∏

⎛ N ⎞ 
P ( − ) P 13  0 1 ⎝⎜ ⎠  i 1 i ( ) 

kii=1 

where  is the likelihood, ∏ is the product, N represents the sample 
size, ki is the response of the ith observation in meeting (1) or not meet-
ing (0) the design value and P is the probability calculated using equa-
tions (11) and (12) (Bolker, 2008). The log-likelihood expression for 
equation (13) is then maximized: 

n ⎛ ⎛ N ⎞ ⎞ 
(β β ) , =∑ log + ki P + ( − ) log 1 P ( ) max l 0 1 ⎝⎜ ⎝⎜ ⎠  log N ki ( − ) ⎠  14

kii=1 

where max l is the objective function to be maximized by taking the log-
likelihood for all observations and the rest of the parameters the same 

as equation (13). The parameter estimates were obtained using the 
quasi-Newton method (BFGS) implemented using the general purpose 
optimization function. 

The NDT values needed to meet the mean design values for MOE 
(No. 1 = 11.0 GPa, No. 2 = 9.7 GPa, No. 3 = 9.0 GPa) and 82 per cent 
of the mean design values for MOE (No. 1 = 9.0 GPa, No. 2 = 8.0 GPa, 
No. 3 = 7.4 GPa), at the 50 per cent, 75 per cent and 95 per cent confi-
dence levels, were calculated for the normal distribution and binomial 
distribution models. The mean design values were selected as one 
threshold value because the design values for MOE are specified at the 
mean level. Values corresponding to 82 per cent of each mean threshold 
value were selected because machine-stress-rated (MSR) lumber grad-
ing requires that 95 per cent of the pieces must be greater than 82 per 
cent of the mean design value (ALSC, 2013). The stress wave tools 
(Hitman and PLG) used in this study are similar to commercial acoustic 
systems that measure MOEdyn to allocate grades to MSR lumber (ALSC, 
2014). The design values for the No. 2 grade material were used as the 
design values for the overall data because this grade made up the 
majority of the pieces in the study (72 per cent) and also it represents 
the grade of the majority of southern pine dimension lumber produced 
(SFPA, 2009), while the design values for each grade were used for the 
grade-specific data.  For  Fb, only eight pieces (1 per cent) failed below the 
design values, with two pieces from the No. 1 grade (1 per cent), six from 
the No. 2 grade (1 per cent) and none from the No. 3 grade. The reason 
for this low number is that for Fb, the design values are at the fifth per-
centile level. Because so few pieces failed below the design values, models 
for predicting the necessary NDT value to meet the design values are less 
useful than the MOE results and are not presented here. 

Results 

Boxplots of the measured lumber properties showed large variability 
in lumber SG, MOE and Fb both within and between trees (Figure 1). 
In the boxplots, trees within each stand were displayed in ascending 
order of the median SG value for the lumber obtained from each 
tree. The median MOE values closely followed the ascending order 
arrangement for SG, but the Fb values were more randomly distribu-
ted, thus emphasizing the often variable relationship between wood 
physical properties and lumber mechanical properties. For MOE, 312 
pieces (38 per cent) were below the design values, comprising 58 
(37 per cent), 222 (37 per cent) and 32 pieces (46 per cent) from 
the No. 1, No. 2 and No. 3 grades, respectively. 

Of the explanatory variables used, SG had the highest correl-
ation with MOE (R = 0.72) and Fb (R = 0.58) (Table 2). The three 
nondestructive instruments had slightly lower correlations with 
MOE (R = 0.63, 0.62, −0.61) and Fb (R = 0.45, 0.43, −0.39) for the 
Hitman, PLG and transverse vibration systems, respectively. The 
measurements of acoustic velocity from the Hitman (AVHM) and  
PLG (AVPLG) instruments were strongly correlated (R = 0.87), with 
only a few outlying observations reducing the correlation. The three 
MOEdyn measurements each had good correlations with static MOE 
(MOEdyn.HM: R = 0.80; MOEdyn.PLG: R = 0.78; MOEdyn.TV: R = 0.83). 

The regression parameters for static MOE and Fb using the nor-
mal distribution approach are  shown in Table  3, and scatterplots of 
static MOE vs the four NDT measurements are shown in Figure 2. 
For static MOE, linear models were fit to the  MOEdyn.TV data, and 
since normality deviations were detected for SG, MOEdyn.HM and 
MOEdyn.PLG, power  models  were  fit for these variables. Because of 
the large sample size (n = 819), the standard error around the 
mean regression line was small for MOE predictions. For all four 
NDT measures, the ranges of the predicted MOE values were quite 
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Figure 1 Variation in SG, MOE and bending strength (Fb) for each sampled tree from each stand with tree number sorted by median SG within stand. 
The boxplots show outliers as dots, the minimum value not including outliers, first quartile (25 per cent), median, third quartile (75 per cent) and 
maximum value sans outliers. 

Table 2 Pearson correlation matrix among wood properties measured, all coefficients were statistically significant (α < 0.05) 

Property AVHM (m/s) AVPLG (m/s) Freq MOEdyn.HM (GPa) MOEdyn.PLG (GPa) MOEdyn.TV (GPa) MOE (GPa) Fb (MPa) 

SG 0.36 0.39 −0.30 0.74 0.75 0.74 0.72 0.58 
AVHM 0.87 −0.88 0.89 0.79 0.82 0.63 0.45 
AVPLG −0.88 0.80 0.90 0.83 0.62 0.43 
Freq −0.77 −0.76 −0.83 −0.61 −0.39 
MOEdyn.HM 0.93 0.94 0.80 0.59 
MOEdyn.PLG 0.95 0.78 0.58 
MOEdyn.TV 0.83 0.61 
MOE 0.75 

SG at 15 per cent moisture content, AVHM = acoustic velocity Hitman HM200 (m/s), AVPLG = acoustic velocity Portable Lumber Grader (m/s), Freq = standar-
dized frequency from transverse vibration, MOEdyn.HM = dynamic modulus of elasticity from Hitman (GPa), MOEdyn.PLG = dynamic modulus of elasticity from 
PLG (GPa), MOEdyn.TV = dynamic MOE from transverse vibration (GPa), MOE = static modulus of elasticity (GPa), Fb = static bending strength (MPa). 

variable, with the σ ranging from 1.28 to 1.61 GPa. The NDT tools 
used in this study, i.e. the two acoustic velocity instruments 
(Hitman and PLG), and the transverse vibration instrument (E-
Computer), calculate MOEdyn using the density of the material com-
bined with either acoustic velocity or frequency information. The 
best performing model for predicting static MOE was the E-
Computer, with a log-likelihood value of −1365.7 (higher is better) 
and a σvalue of 1.28 GPa. The Hitman model σ (1.38 GPa) was simi-
lar to the PLG model (1.43 GPa), and both were an improvement 
over the SG model (1.61 GPa). 

For static Fb, a linear model was used for each NDT measure 
except MOEdyn.PLG, where a power model was used (Table 3). 
Prediction of static Fb from the four NDT measures varied con-
siderably, with σ ranging from 4.47 to 4.58 MPa. The standard 
error around the mean was also variable, as indicated by the 
grey polygon around the mean (Figure 3). The best performing 

model in terms of the log-likelihood (−2387.6) and σ (4.47 MPa) 
values was the MOEdyn.TV model. However, the differences 
between SG (4.58 MPa) and the three NDT instruments were 
minimal, and thus overall, each of the NDT measures showed a 
similar level of performance in predicting Fb. 

The probability parameters for the binomial distribution mod-
els are shown in Table 4. The model parameters were used to 
calculate the probability of meeting the specified design values 
when used with the inverse-logit function (equation (11)). For 
meeting the 9.7 GPa mean design value, 82 per cent of the 
9.7 GPa design value (8.0 GPa), and the Fb design value (6.4 
MPa), the MOEdyn.TV model had the lowest AIC values. Note that 
the AIC values between the normal and binomial distribution 
models should not be directly compared. 

Tables 5 and 6 show the results of the four NDT measures 
needed to meet the design values (Table 5) vs 82 per cent of 
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Table 3 Regression parameters for linear and power models using MOE (GPa) and bending strength (Fb) (MPa) as the dependent variables vs 
nondestructive evaluation predictions 

Model Regression statistics Model parameters 

y Equation Log-likelihood AIC β0 β1 λ σ 

MOE (β0 + β1 SG)λ −1547.3 3100.6 −2.01 17.99 1.21 1.61 
(β0 + β1 MOEdyn.HM)

λ −1425.9 2857.8 1.67 1.11 0.87 1.38 
(β0 + β1 MOEdyn.PLG)

λ −1456.1 2918.2 2.13 1.09 0.86 1.43 
β0 + β1 MOEdyn.TV −1365.7 2735.4 1.77 0.73 – 1.28 

Fb β0 + β1 SG  −2408.2 4820.4 −15.36 63.99 – 4.58 
β0 + β1 MOEdyn.HM −2397.0 4798.0 2.25 1.22 – 4.52 
(β0 + β1 MOEdyn.PLG)

λ −2405.0 4816.0 1.89 1.58 0.93 4.56 
β0 + β1 MOEdyn.TV −2387.6 4781.2 1.31 1.29 – 4.47 

SG at 15 per cent moisture content, MOEdyn.HM = dynamic modulus of elasticity from Hitman (GPa), MOEdyn.PLG = dynamic modulus of elasticity from 
PLG (GPa), MOEdyn.TV = dynamic MOE from transverse vibration (GPa), MOE = static modulus of elasticity (GPa), Fb = static bending strength (MPa), 
σ = standard error of the estimate. 

Figure 2 Plots showing the linear or power relationship between MOE (GPa) and SG, and MOEdyn measured from the Hitman HM200, PLG and trans-
verse vibration (GPa). The solid line is the mean, the grey polygon around the solid line is the standard error around the mean and the dashed lines 
are the 95 per cent prediction intervals. 

the design values (Table 6) for MOE at 50 per cent, 75 per cent 
and 95 per cent confidence using both the normal and the bino-
mial distribution approaches. The tables include all lumber 
pieces, irrespective of grade, grouped together with the applied 
threshold of the No. 2 grade MOE (9.7 GPa vs 8.0 GPa) and then 
separated by grade to meet the No. 1 grade (11.0 GPa vs 9.0 
GPa), No. 2 grade (9.7 GPa vs 8.0 GPa) and No. 3 grade (9.0 GPa 
vs 7.4 GPa) design values. For the No. 2 grade material, using 
the normal and binomial distribution approaches, the MOEdyn.TV 

value needed at 50 per cent confidence using the normal 
approach was 10.9 GPa, whereas the corresponding value for 
the binomial approach was 11.0 GPa. At the 95 per cent confi-
dence level, the normal approach required a 26 per cent 
increase to 13.6 GPa, and the binomial approach needed a 20 
per cent increase to 13.0 GPa. A graphical comparison between 
the normal and binomial approaches at the different confidence 
levels is shown in Figure 4 for the MOEdyn.TV variable. 

Discussion 

The focus of this study was to quantify the relationships 
between both static MOE and Fb and different NDT methods for 
loblolly pine dimension lumber, and based on the resultant rela-
tionships, determine the probability that a given NDT value 
meets a specific design value threshold. The use of NDT on 
wood and lumber has received considerable attention since the 
1960s (Ross, 2015a) and research has continued on the use of 
NDT in evaluating timber, boards and dimension lumber (Carter 
et al., 2006; Grabianowski et al., 2006; Baillères et al., 2012; 
Yang et al., 2015, 2017; Llana et al., 2016). We found that NDT 
measurements were moderately to strongly correlated with 
lumber MOE and less so for Fb; similar results were found in 
other lumber studies. Yang et al. (2015) reported strong 
relationships between static MOE and NDT-derived values in 
southern pine lumber using three instruments – the Hitman 
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Figure 3 Plots showing the linear or power relationship between bending strength (Fb) (MPa) and SG, and MOEdyn measured from the Hitman 
HM200, PLG and transverse vibration (GPa). The solid line is the mean, the grey polygon around the solid line is the standard error around the mean 
and the dashed lines are the 95 per cent prediction intervals. 

Table 4 Regression parameters for the logistic binomial regression reported by Yang et al. (2015) since that study focused on No. 2 
models for dependent variables MOE (GPa) at the No. 2 mean value grade material only, whereas we used No. 1, 2 and 3 grade 
(9.7 GPa), 82 per cent of the No. 2 mean value (8.0 GPa) and bending material. In a subsequent paper, Yang et al. (2017) reported 
strength (Fb) (MPa) at the No. 2 fifth percentile value (6.4 MPa) vs NDT weak relationships for static MOR and NDT using the Hitman 
predictions (R2 = 0.28, RMSE = 14.4 MPa), the A-Grader (Falcon Engineering 

Ltd.; R2 = 0.27, RMSE = 14.9 MPa) and the E-Computer (R2 = 
Design value Model Regression statistics Model 0.26, RMSE = 14.7 MPa). In the current study, we found similar 

parameters results for Fb, confirming the somewhat poor predictive perform-
ance of NDT methods for strength properties, as compared with 

y x Log-likelihood AIC Β0 Β1 MOE. 

9.7 GPa MOE SG −381.55 767.11 −16.90 35.16 
MOEdyn.HM −318.39 640.78 −10.72 0.99 
MOEdyn.PLG −314.63 633.26 −10.75 0.99 
MOEdyn.TV −285.62 575.25 −13.02 1.18 

8.0 GPa MOE SG −224.86 453.72 −11.34 27.77 
MOEdyn.HM −171.12 346.23 −9.42 1.11 
MOEdyn.PLG −179.26 362.53 −8.25 0.98 
MOEdyn.TV −161.93 327.86 −10.28 1.18 

6.4 MPa Fb SG −65.50 135.00 −0.53 9.35 
MOEdyn.HM −60.06 124.11 −1.27 0.50 
MOEdyn.PLG −62.24 128.48 −0.07 0.37 
MOEdyn.TV −57.75 119.49 −2.24 0.59 

SG at 15 per cent moisture content, MOEdyn.HM = dynamic modulus of 
elasticity from Hitman (GPa), MOEdyn.PLG = dynamic modulus of elasticity 
from PLG (GPa), MOEdyn.TV = dynamic MOE from transverse vibration 
(GPa), MOE = static modulus of elasticity (GPa), Fb = static bending 
strength (MPa), σ = standard error of the estimate. 

(R2 = 0.82, RMSE = 1.12 GPa), the A-Grader (Falcon Engineering 
Ltd.; R2 = 0.77, RMSE = 1.21 GPa) and the E-Computer (R2 = 
0.86, RMSE = 0.98 GPa). The first and third instruments were 
used in the current study, whereas the A-grader is similar to the 
PLG instrument. We can account for the slightly better results 

In a study on 2 × 4 southern pine lumber, Wang et al. (2008) 
reported strong correlations between static MOE and MOEdyn, 
determined from density and acoustic velocity using the 
Sylvatest instrument (R2 = 0.82) and the E-Computer (R2 = 
0.87). Wessels et al. (2011a) found relatively strong relationships 
with MOE (R2 = 0.72) and weak relationships with MOR (R2 = 
0.20) for hybrid Pinus elliottii × Pinus caribaea standing timber 
and boards, using a resonance instrument. Overall, our results 
are similar to those from the studies discussed above and col-
lectively show that NDT tools give reasonable predictions of 
lumber MOE. Note that the high data variability in lumber is not 
unique and is also observed when using NDT to predict mechan-
ical properties of small clearwood specimens (Auty and Achim, 
2008). 

The current study is set apart from previous studies in that 
besides quantifying the relationships between static wood prop-
erties (MOE and Fb) and those derived from NDT methods, we 
also estimated the probabilities for given NDT values of meeting 
specific design value thresholds utilizing two different statistical 
approaches based around the normal and the binomial distribu-
tions. Although results from both approaches were similar, the 
binomial distribution approach was simpler when calculating 
the probabilities. The binomial approach requires new regression 
parameters (β0 and β1) to be calculated for each threshold-
dependent variable, whereas with the normal distribution 
approach the regression parameters and the standard error of 
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Table 5 Dependent variable value needed to meet the MOE (GPa) design values at 50 per cent, 75 per cent and 95 per cent confidence using the 
normal distribution and binomial distribution approaches 

All samples threshold = No. 1 grade threshold = No. 2 grade threshold = No. 3 grade threshold = 
9.7 GPa 11.0 9.7 GPa 9.0 GPa 

Confidence Confidence Confidence Confidence 

NDT Distribution 50% 75% 95% 50% 75% 95% 50% 75% 95% 50% 75% 95% 

SG Normal 0.478 0.511 0.558 0.506 0.536 0.577 0.476 0.510 0.559 0.488 0.523 0.571 
Binomial 0.481 0.512 0.564 0.510 0.536 0.582 0.480 0.512 0.566 0.488 0.529 0.596 

MOEdyn.HM (GPa) Normal 10.7 12.1 14.0 11.9 13.5 15.9 10.7 11.8 13.6 11.1 13.5 16.7 
Binomial 10.8 11.9 13.8 12.0 13.5 16.2 10.8 11.7 13.1 11.2 13.5 17.4 

MOEdyn.PLG (GPa) Normal 10.7 12.1 14.3 12.0 13.7 16.2 10.6 11.9 13.9 11.7 13.3 15.6 
Binomial 10.9 12.0 13.9 12.2 13.8 16.7 10.8 11.8 13.3 11.7 12.9 15.0 

MOEdyn.TV (GPa) Normal 10.9 12.1 13.8 12.1 13.4 15.3 10.9 12.0 13.6 11.3 12.8 15.0 
Binomial 11.0 12.0 13.5 12.2 13.5 15.7 11.0 11.8 13.2 11.3 12.5 14.5 

SG at 15 per cent moisture content, MOEdyn.HM = dynamic modulus of elasticity from Hitman (GPa), MOEdyn.PLG = dynamic modulus of elasticity from 
PLG (GPa), MOEdyn.TV = dynamic MOE from transverse vibration (GPa). 

Table 6 Dependent variable value needed to meet 82 per cent of the MOE (GPa) design values at 50 per cent, 75 per cent and 95 per cent 
confidence using the normal distribution and binomial distribution approaches 

All samples threshold = 
8.0 GPa 

No. 1 grade threshold = 
9.0 

No. 2 grade threshold = 
8.0 GPa 

No. 3 grade threshold = 
7.4 GPa 

Confidence Confidence Confidence Confidence 

NDT Distribution 50% 75% 95% 50% 75% 95% 50% 75% 95% 50% 75% 95% 

SG Normal 0.423 0.458 0.506 0.442 0.473 0.515 0.421 0.456 0.505 0.436 0.473 0.524 
Binomial 0.413 0.452 0.516 0.448 0.471 0.509 0.406 0.446 0.514 0.364 0.419 0.558 

MOEdyn.HM (GPa) Normal 8.2 9.6 11.5 8.2 10.0 12.4 8.4 9.5 11.1 7.5 10.2 13.7 
Binomial 8.6 9.5 11.2 8.9 10.1 12.1 8.6 9.4 10.7 6.6 8.8 12.6 

MOEdyn.PLG (GPa) Normal 8.3 9.7 11.7 8.5 10.2 12.7 8.3 9.5 11.3 9.1 10.6 12.9 
Binomial 8.5 9.6 11.4 9.1 10.3 12.3 8.4 9.4 11.0 8.8 9.8 11.5 

MOEdyn.TV (GPa) Normal 8.6 9.8 11.5 9.0 10.3 12.3 8.5 9.7 11.3 8.9 10.4 12.6 
Binomial 8.8 9.7 11.2 9.4 10.4 11.9 8.7 9.5 10.8 8.5 9.6 11.5 

SG at 15 per cent moisture content, MOEdyn.HM = dynamic modulus of elasticity from Hitman (GPa), MOEdyn.PLG = dynamic modulus of elasticity from 
PLG (GPa), MOEdyn.TV = dynamic MOE from transverse vibration (GPa). 

the estimate (σ) remain the same for a given dataset. Because 
the parameters for the binomial distribution are unique for each 
threshold value, the results may be slightly more reliable than 
the normal distribution approach. 

When predicting the mean response at the 50 per cent confi-
dence level using the normal distribution approach, it follows 
that 50 per cent of the pieces will not meet the MOE design 
value. For each NDT measurement, the values needed to meet 
the design value at 95 per cent confidence, compared with 50 
per cent confidence, were on average 28 per cent higher. An 
interesting question here is what level of confidence is required 
for a specific scenario? Because the MOE design values are at 
the mean level of the population, not every piece needs to meet 
the design value for each grade and thus for some applications 
(e.g. a floor system with multiple members), a 50 per cent 

confidence is likely sufficient. The MSR grading systems require 
that 95 per cent of the pieces exceed 82 per cent of the mean 
value (ALSC, 2013, 2014), and thus here a 95 per cent confi-
dence level is appropriate. An important consideration when 
using NDT values are the differences between static and 
dynamic values. Divós and Tanaka (2005) found that MOEdyn 

properties were 10 per cent higher than static MOE properties in 
clearwood spruce samples. We found similar results in our study, 
where MOEdyn.HM was 15 per cent higher and MOEdyn.PLG and 
MOEdyn.TV were both 16 per cent higher than static MOE. 

For all the three NDT instruments used in this study, the cal-
culation of MOEdyn depends on the density of the material. An 
interesting point is the relative importance of predicting MOE 
using density as compared with acoustic velocity or frequency. 
We found that SG had a higher correlation with MOE (R = 0.72) 
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Figure 4 Probability at 50 per cent, 75 per cent and 95 per cent that static MOE (GPa) will be above the No. 2 design value threshold (9.7 GPa) for a 
given MOEdyn value determined from transverse vibration using the normal distribution approach (left) and binomial distribution (right). 

and Fb (R = 0.58) than acoustic velocity or frequency. Wessels 
et al. (2015b) also found that density was a better predictor of 
MOE and MOR than acoustic velocity in Pinus patula; however, in 
that study, acoustic velocity was determined using a time-of-flight 
instrument and not a resonance instrument. Acoustic velocity 
using resonance tools is generally considered more accurate than 
the time-of-flight approach because the former measures multiple 
waves (Mora et al., 2009; Wang, 2013). From an anatomical per-
spective, increasing acoustic velocity from pith to bark is attributed 
to an increase in density and tracheid length, and a decrease in 
microfibril angle (Hasegawa et al., 2011). Although few studies 
have directly assessed the effect of microfibril angle on MOE in 
lumber, similar correlations with those found in this study have 
been reported between MOE and MFA (R = −0.73), and MOE and 
density (R = 0.69) for Pinus patula (Wessels et al., 2015a). 

Each NDT tool used in this study showed similar accuracy in 
predicting mechanical properties, although the transverse vibra-
tion tool was slightly more accurate than the stress wave tools. 
These differences could be the result of measurements made in 
the axial vs edgewise direction. In Norway spruce (Picea abies L. 
Karst.), Olsson et al. (2012) demonstrated that MOEdyn calcu-
lated from acoustic velocity measured in the edgewise orienta-
tion was slightly more accurate at predicting static MOE than 
velocity measured in the axial orientation (R2 = 0.89 vs 0.84). 
They concluded that dynamic measurements of edgewise stiff-
ness are better able to capture low stiffness areas within lumber 
than dynamic measurements of axial stiffness, which are more 
a function of stiffness across the entire cross section (Olsson 
et al., 2012). 

Each NDT tool also has advantages and disadvantages 
regarding its setup and use. Although the Hitman and PLG stress 
wave tools yielded similar results, they are deployed differently. 
The Hitman is a portable system designed for use on logs but 
can also be used to evaluate lumber, whereas the PLG system 
requires a computer connection, and while designed for lumber, 

it can also be used on logs. For the accelerometer in the Hitman 
system to record the resonant frequency, it needs to be in direct 
contact with the wood (Achim et al., 2011). Thus, care is needed 
when using the system to maintain contact between the unit 
and the sample during a measurement reading. For logs, this is 
not a challenge given their mass, but for smaller dimension 
lumber, this can pose challenges when generating the stress 
wave using a hammer. In the case of the PLG, the microphone 
is placed on a stand near the end of the lumber but not in direct 
contact with the piece, thereby making it easier to use. 
Compared with the stress wave tools, the E-Computer system is 
slightly more accurate but has the disadvantage of requiring 
more care in the calibration and initial setup of the instrument. 
The E-Computer is traditionally used for testing lumber flatwise 
(ASTM, 2012); however, edgewise testing is also possible, but 
specimen placement, particularly with warped lumber, is more 
challenging (Yang et al., 2015). 

Either of the statistical frameworks presented here can be 
applied by industry in quality control systems once stable, mill-
validated relationships have been developed between static and 
NDT measurements. At the same time, further work is needed 
to decrease the prediction errors from the NDT techniques and 
consequently increase the accuracy in the segregation of mater-
ial between grades. Our data were collected under ambient 
conditions, but with reasonable control over lumber moisture 
content. Since acoustic velocity and MOEdyn both decrease, and 
density increases, with increased moisture content (Chan et al., 
2011), consistency in mill operations would be important for the 
accuracy of the prediction models. Mills with inline moisture 
measurement systems could likely improve prediction accuracy 
by adjusting the NDT readings to a specific moisture content. 

An important factor observed in this, and other studies, is the 
difficulty in predicting bending strength (MOR and Fb). Here, we 
specifically did not address the impact of knots on the Fb of lum-
ber, but unsurprisingly, accounting for knots improves predictions 
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of bending strength (Olsson et al., 2012, 2013; Oscarsson et al., 
2014). Although previously unavailable in commercial facilities, 
new systems have been implemented that enable real-time quan-
tification of knots on sawn lumber (Baillères et al., 2012; Hitaniemi 
et al., 2014), usually by measuring localized grain angle using the 
‘tracheid effect’ (Viguier et al., 2017). These systems are frequently 
combined with inline measurements of SG and/or MOEdyn and can 
provide much more accurate predictions of mechanical properties 
by simultaneously combining several wood characteristics into the 
models (Baillères et al., 2012). A recent study by Wong et al. 
(2016) used Bayesian methods to develop prediction models for 
Spruce-Pine-Fir lumber bending and tensile strength that included 
parameters accounting for the number of large knots, the pres-
ence or absence of shake and a miscellaneous category to cover 
other defects (e.g. grain deviations and wane). Inclusion of this 
information for each piece of lumber would improve predictions of 
lumber performance characteristics. 

Conclusions 

The results from this study show that while NDT methods can 
accurately predict the confidence limits surrounding mean 
design values for MOE, the range of expected values presents 
challenges for the forest industry due to the uncertainty sur-
rounding measured static values. Our study highlights the value 
of calculating the probability of meeting specific design thresh-
olds. We incorporated the standard error of the estimate to 
improve inferences about the desired population by integrating 
the likelihood function from a linear or power model to calculate 
the probability of meeting a certain design value threshold. The 
normal distribution predictions yielded similar probability values 
to those obtained using the more traditional binomial distribu-
tion approach using logistic regression. The advantage of the 
normal distribution approach over the binomial approach is that 
the regression parameters do not need to be re-estimated for 
each threshold value. Either approach used here could be incor-
porated into prediction equations used by industry to determine, 
with increased confidence, whether lumber properties predicted 
using NDT methods meet design value requirements. 
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