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Determination of Constitutive Properties in Inverse Problem Using Airy 
Stress Function 

A. Alshaya, John M. Considine, and R. Rowlands 

Abstract A new inverse problem formulation is developed using the Airy stress function. Inverse methods are used to 
determine the constitutive properties of a graphite/epoxy laminated composite loaded vertically by processing measured 
values of v-displacement component with an Airy stress function in complex variables. Displacements are recorded using 
digital image correlation. The traction-free conditions on the symmetrically located sided notches are satisfied analytically 
using conformal mappings and analytic continuation. The traction-free on the vertical free edge and a symmetrical condition 
on horizontal line of symmetry are imposed discretely. The primary advantage of this new formulation is the direct use 
of displacement data, eliminating the need for numerical differentiation when strain data is required. The inverse method 
algorithm determined the constitutive properties with errors range from 2% to 10%. Selection of Airy coefficients, test 
geometry configuration and comparison with other inverse methods will be addressed. 
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12.1 Introduction 

The Airy stress function in complex variables was used extensively in determining stresses from measured displacements 
[1–4]. The Airy stress function can be processed with other measured data using thermoelasticity [5–7], photoelasticity [8], 
digital image correlation [2], moiré [9] or strain gages [10]. These hybrid methods do not necessitate knowing the applied 
loads, smooths the measured data and determines individual stresses throughout, including on the edge of the hole. All of the 
prior applications of the mapping technique evaluated the stresses by using the constitutive properties found experimentally 
from standard tensile tests whereas the present approach only evaluated these properties using the measured displacement 
from Digital Image Correlation. 

One method of evaluating constitutive properties of orthotropic materials is the use of inverse methods (IM). Avril and 
Pierron [11] reviewed several IM approaches and showed their general equivalency. IM can be generally described as the 
iterative adjustments of parameters (constitutive properties) in a numerical model (Airy stress function scheme) to minimize 
the difference between an experimentally measured quantity (displacement) and the numerically calculated quantity. 

By comparing FEM calculated out-of-plane displacement with those measured by shadow moiré, Le Magorou et al. [12] 
determined bending/torsion rigidities in composite wood panels by the resolution of IM. Molimard et al. [13] evaluated 
constitutive properties of a composite material by minimizing the difference between moiré-measured displacements and 
those predicted by FEM in a perforated tensile plate. Similarly, Genovese et al. [14] used IM procedures to evaluate a truss 
system and a composite plate. Considine [15] determined material properties in heterogeneous materials from full-field 
simulated displacement data using IM. Each of these references incorporated a specific type of IM entitled FEMU-U (finite 
element method updating – displacement). The root mean square of displacement differences, also called a cost function, 
between the measured values and those predicted by FEM are minimized by iteratively changing constitutive properties in 
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the FEM model. FEMU-U is attractive because displacements are first-order outputs of high-resolution full-field techniques 
of DIC and ESPI where strain is a second-order output and has greater noise associated with numerical differentiation. 

In 2-D models, the degree of freedom is (number of nodes) � 2 – (number of constitutive parameters) – 1. For homoge-
neous, isotropic materials, the number of constitutive properties is two (E, v); for homogeneous, orthotropic materials, the 
number of constitutive parameters are four (E11, E22, G12, v12). For either case, the number of degrees of freedom is large 
and the problem is solved by minimizing least squares of the chosen cost function. The goal of this work is to evaluate 
the constitutive properties of a composite plate containing symmetrically-located sided-notches and vertically loaded in the 
strongest/stiffest material direction using IM and Airy stress function scheme. The authors are unaware of prior utilization 
of mapping and complex variables to experimentally determine the constitutive properties in notched composites from 
displacement data. 

12.2 Relevant Equations 

For plane problems having rectilinear orthotropy and no body forces, the Airy stress function, F, can be expressed as a 
summation of two arbitrary analytical functions, F1 (z1) and F2 (z2), of the complex variables, z1 and z2, as [13] 

F D 2Re ŒF1 .z1/ C F2 .z2/� (12.1) 

such that zj D xC�jy for jD 1 , 2 and Re denotes the ‘real part’ of a complex number. The complex material properties �1 

and �2 depend on the constitutive properties. The displacements in rectangular coordinates (x, y) of the physical z(DxC iy) 
plane can be expressed in terms of the stress functions. By introducing the new stress functions 

dF1 .z1/ dF2 .z2/
ˆ .z1/ D ; and ‰ .z2/ D (12.2)

dz1 dz2 

one can write the displacements as 

u D 2Re Œp1ˆ .z1/ C p2‰ .z2/� � woy C uo (12.3) 

v D 2Re Œq1ˆ .z1/ C q2‰ .z2/� C woy C vo (12.4) 

where wo , uo, and vo are constants of integration and characterize any rigid body translations (uo and vo) and rotation (wo). 
The other quantities, which depend on material properties, are 

�2 �2 
1 �12 2 �12 �12 1 �12 1 

p1 D � ; p2 D � ; q1 D �  �1 C ; q2 D �  �2 C (12.5)
E11 E11 E11 E11 E11 E22�1 E11 E22�2 

When the plate is loaded physically in a testing machine, the rigid body motions, uo , vo , and wo are zero. Plane problems 
of elasticity classically involve determining the stress functions, ˆ(z1)and ‰(z2), throughout a component and subject to the 
boundary conditions around its entire edge. For a region of a component adjacent to a traction free-edge, ˆ(z1) and ‰(z2) 
can be related to each other by the conformal mapping and analytic continuation techniques. The displacements can then 
be expressed in terms of the single stress function, ˆ(z1). Moreover, ˆ(z1) will be represented by a truncated power-series 
expansion whose unknown complex coefficients are determined experimentally. Once ˆ(z1) and ‰(z2) are fully evaluated, 
the individual displacements are known from Eqs. 12.3 through 12.4. For a significantly large region of interest in a finite 
structure, it may also be necessary to satisfy other boundary conditions at discrete locations. 

Conformal mapping is introduced to simplify the plane problem by mapping the region Rz of a complicated physical 
zD xC iy plane of a loaded component into a region R� of a simpler shape in the � D � C i  plane, the latter being a unit 
circle if one represents the stress function as a Laurent series, Fig. 12.1 [13–21]. The new coordinate system (and resulting 
geometry) is usually chosen to aid in solving the equations and the obtained solution from this simplified domain can then 
be mapped back to the original physical geometry for a valid solution. 

Assume that a mapping function of the form zD¨(�) exists and which maps R� of the simpler plane into Rz of the more 
complicated physical plane. For orthotropy, auxiliary planes and their induced mapping functions are defined in terms of 
� j D � C�j , therefore zj D¨ j(� j), for jD 1 , 2. The induced conformal mapping functions are one-to-one and invertible. The 
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stress functions ˆ(z1) and ‰(z2) can be expressed as the following analytic functions of �1 and �2. Derivatives of the stress 
functions with respect to their argument are 

d�1 ˆ0 .�1/ ‰0 .�2/
ˆ0 .z1/ D ˆ0 .�1/ D ; ‰0 .z2/ D (12.6)

dz1 ! ’ .�1/ ! ’ .�2/1 2 

The analyticity of the mapping functions satisfies the equilibrium and compatibility throughout region Rz of the physical 
plane. 

12.2.1 Traction-Free Boundaries 

Using the concept of analytic continuation, the individual stress functions for a region R� adjacent to a traction-free boundary 
of the unit circle of an orthotropic material are related by [23, 24] 

where B and C are 

� � 
‰ .�2/ D Bˆ 1=�2 C Cˆ .�2/ 

B D 
�2 � �1 ; 
�2 � �2 

C D 
�2 � �1 

�2 � �2 

(12.7) 

(12.8) 

Equation (12.7) enable the displacements of the structure to be expressed in terms of a single stress function, ˆ(�1), the 
latter which can be represented by a Laurent series expansion. Equation (12.7) assumes ability to map the physical boundary 
of interest into the unit circle in the mapped plane. Reference [25] contains a simple, clear derivation of Eq. (12.7). 

12.2.2 Mapping Formulation 

For a region adjacent the circular notch of radius R, the following function [19] 

�   � � R � � 1 C i�j
zj D ¨ j �j D 1 � i�j �j C ; j D 1; 2 (12.9)

2 �j 

maps the region of the exterior of a unit circle, R� , of the  � � plane into the region Rz of the z-physical plane, Fig. 12.2. The  
inverse of the induced mapping function is 

r � � 
2zj ˙ zj � R2 1 C �2 

j � � 
�j D !�1 zj D � � ; j D 1; 2 (12.10)j R 1 � i�j 
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Fig. 12.2 Vertically-loaded finite 
Gr/E [013/905/013] composite 
plate with circular side notches 
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The branch of the square root in Eq. (12.10) is chosen such that j� jj � 1 for  jD 1 , 2.  

12.2.3 Mapping Collocation and Displacements 

The single stress function can be expresses as the following finite Laurent series [17] 

N X 
ˆ .�1/ D Aj�

j 
1 

j D �N 
j ¤ 0 

(12.11)

where Aj D aj C ibj are the unknown complex coefficients (aj and bj are both real numbers). The jD 0 term contributes to 
rigid-body motion and can be omitted. Substituting Eq. (12.11) into (12.7) yields 

N � � X �j j
‰ .�2/ D AjB� C AjC�2 2 

j D �N 
j ¤ 0 

(12.12)

http:AjB�CAjC�(12.12
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where Aj is the complex conjugate of Aj. At least for a finite, simply connected region R� , ˆ(�1) is a single-valued analytic 
function. Orthotropic composite whose complex parameters are purely imaginary when the directions of material symmetry 
are parallel and perpendicular to the applied load require that only odd terms be retained in the Laurent expansions. From 
Eqs. (12.3) and (12.4), the displacements can be written as 

	 


	 


N 

u D 2 
˚

Re 
� �jAjp1�1 

j C p2C�2 
j Aj C p2B�2 

j D �N;�N C 2; : : :  
j ¤ 0 

N 

v D 2 
X ˚� 

Re �jAjq1�1 
j C q2C�2 

j Aj C q2B�2 

j D �N;�N C 2 

X 

j ¤ 0 

(12.13) 

(12.14) 

The only unknowns in these expressions for the displacements are the complex coefficients Aj D aj C ibj, the other 
quantities involve geometry (location) or material properties. Because the summation in Eqs. (12.13) through (12.14) 
involves only the odd values of N, the number of complex coefficients, Aj, is  N C 1 and the number of real coefficients, 
aj and bj, is 2(N C 1). These coefficients can be determined from measured displacement data. It should be noted that by 
using conformal mapping and analytic continuation techniques, Eqs. (12.13) through (12.14) imply that the induced stresses 
satisfy equilibrium and traction-free conditions in the adjacent portion of the entire boundary. However, unlike a classical 
boundary-value problem where one would typically evaluate the unknown coefficients, Aj, by satisfying the boundary and 
loading conditions around the entire shape, one can use a combination of the measured stresses and/or displacements from 
within region Rz to determine these unknown complex coefficients, Aj. Additional known boundary conditions may also be 
imposed at discrete locations. The concept of collecting measured data in a region R* adjacent to an edge � , mapping Rz into 
R� such that � of the physical z-plane is mapped into the unit circle in the � � plane whereby the traction-free conditions on 
� are satisfied continuously, relating the two complex stress functions to each other, plus satisfying other loading conditions 
discretely on the boundary of the component beyond � will be referred to as the mapping-collocation technique. 

The interior displacement data v� at m different locations within region R� and q known stress conditions (in terms 
of xy) at discrete points along the free outer surface and line of symmetry (y D 0) are employed. A system of 
simultaneous linear equations [V](mC q) � 2(N C 1)fcg2(N C 1) � 1 D fV� g(mC q) � 1, is formed whose matrix [V] consists of 
analytical expressions of displacement component v *, Eq.  (12.14), and the expressions of the known stress conditions, 
vector fcg D fa�N , b�N , a�N C 2, b�N C 2, : : :  , aN � 2, bN � 2, aN , bNg has 2(N C 1) unknown real coefficients, and vector fV�g
includes the m measured displacement values of v� and q discretely imposed stress conditions such that mC q�N C 1. The 
best values of the coefficients Aj, in a least-squares numerical sense, can then be determined. The variables � j D � C�j are 
related to the physical locations zD xC iy through the inverse mapping function zj D¨ j(� j) of Eqs. (12.9) through (12.10). 

12.2.4 Inverse Method Procedure 

The particular inverse method used here is combining displacement produced from Airy stress function scheme with 
displacements measured using DIC. Through an iterative process that determines new constitutive parameters, the 
displacement difference between measured DIC and produced from Airy stress function is minimized. The function to be 
minimized is 

� � 
f bvAiry;P D krk ; where r D bvDIC �bvAiry (12.15) 

where bvAiry and bvDIC are vector containing nodal v-displacements determined by Airy stress function scheme and DIC, 
respectively. P is a vector containing the constitutive parameters, E1, E2, v12, G12 and krk is the norm of r. Because Eq. (12.15) � � 
is nonlinear with respect to P, iterative procedures are appropriate methods for minimizing of f bvAiry;P and determination of 
P. LMA (Levenberg-Marquardt Algorithm) is commonly used because it combines the benefits of Steepest Descent Method 
and Gauss-Newton Method. The LMA has the form [15] 
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� � ���1
PiC1 D Pi � JTJ C � diag JTJ JTr (12.16) 

D @rmwhere i is iteration number, J and JT are Jacobian and Jacobian transpose, determined by backward difference, Jm;n @Pn 
I m 

is number of nodal displacements and n is number of constitutive parameters (4 in this work), and is non-negative damping 
factor, adjusted each iteration step, adjusts between Steepest Descent Method and Gauss-Newton Method. 

The primary disadvantage of LMA is the need for matrix inversion during each iteration. In most applications, reduced 
iterations compensate for the matrix inversion. 

After calculating a new PiC 1, the constitutive parameters are checked for validity, i.e., a positive-definite stiffness matrix, 
and are adjusted if not valid. The validated PiC 1 are inputs to a new analysis and the resulting nodal displacements are used 
to determine fiC 1. If  fiC 1 < fi, the constitutive parameters are updated, PiC 1 ! Pi , is reduced by a factor of 10, and the next 
iterations begins. If fiC 1 > fi, then is increased by a factor of 10 and Pi is not updated. As ! 0, LMA becomes exactly 
the Gauss-Newton Method. 

12.3 Experimental Details 

The developed inverse hybrid-DIC approach is utilized to analyze a finite-width tensile [013/905/013] graphite/epoxy 
orthotropic plate (from Kinetic Composites, Inc., Oceanside, CA; E1 D 104 GPa, E2 D 28 GPa, G12 D 2.9 GPA, v12 D 0.16 
[1]) with side notches of radius R D 12.7 mm was loaded in the strongest/stiffest material direction (1-, y-direction), Fig. 12.2. 
Over-all laminate dimensions are 279.4 mm long, 76.2 mm wide and 5.28 mm thick. The side notches were machined with a 
water jet. The coordinate origin is at the center of the plate and the response is symmetric about x- and y-axes. The laminate 
elastic properties were obtained from conducting uniaxial tensile tests in the strong/stiff (y-direction), weak/compliant (x-
direction) and 45-degree orientations [1]. 

12.3.1 Digital Image Correlation 

Digital Image Correlation (DIC) is a full-field computer-based image analysis technique for the non-contact measurement 
of displacements of a surface equipped with a speckle pattern. The method tracks the motion of the speckles by comparing 
the gray scale value at a point (subset) in a deformed and undeformed configuration. Two sets of images are recorded; the 
first image typically being at zero load and the second image under load. Vic-Snap software (by Correlated Solutions, Inc., 
Columbia, SC, USA) was used to record the images of the plate in its loaded and unloaded conditions and to evaluate the 
displacements for post-processing. When utilizing two cameras, a separate calibration grid (provided by Correlated Solution 
with the DIC package) was used to evaluate the displacement data in physical units rather than in pixels. Quality displacement 
information at and near the edge of the notch and at (near) the longitudinal edge of the specimen is unavailable because the 
DIC software’s correlation algorithm is unable to track a group of pixels (subset) which lack neighboring pixels. To perform 
the tracking, the subset is shifted until the pattern in the deformed image closely matches that of the reference image. 

The measured DIC data were digitalized in matrix form and combined with the Airy stress function to determine 
the constitutive properties. Recognizing one has fewer complex coefficients to evaluate than amount of data from which 
to evaluate them, the coefficients were determined using least squares. Although the recorded displacement data at, and 
adjacent to, an edge are unreliable and raw displacement information in composites is inherently noisy, the present technique 
overcomes these challenges by avoiding the use of recorded data on and near edges and by processing the measured interior 
data with a stress function, mapping and analytic continuation. 

12.3.2 Plate Preparation and Data Recording and Processing 

A random speckle pattern of white dots on a black background was applied to the composite’s surface. The plate was 
statically loaded in the hydraulic grips of a 20 kips capacity MTS hydraulic testing machine from 0 N to 7,117 N in 890 N 
load increments. Displacement data were recorded and processed at each load increment. Before conducting the quantitative 
analysis, two cameras were used to capture the three displacement components by which to verify there was no out-of-plane 
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Fig. 12.3 (a) Averaged recorded v-displacement data from Vic-snap from all four quadrants; (b) Source locations of m D 2,200 DIC values 

bending [1]. The recorded v-displacement information was exported to MATLAB (Mathworks, Inc. 2015) to convert each 
pixel into a data point, i.e., points. Since DIC data typically are unreliable on and near an edge, no recorded displacements 
were used within at least 2.95 mm D 0.12 in. of the boundary of the notch. 

The DIC correlated solution software provided approximately 102,200 values of v when the analysis was carried out for 
17 subsets in five steps. The plate is geometrically and mechanically symmetrical about the vertical y-axes. Since the top 
end of the physically tested plate was fixed stationary while the bottom end moved vertically downward, the zero vertical 
displacement was shifted to be at the horizontal middle of the plate to represent the case of the plate being extended at 
both top and bottom ends. The measured v-displacement data were subsequently averaged about all quadrants to cancel any 
asymmetry and the resulting averaged measured of values of 17,666 v-displacement data are plotted in the second quadrant 
as  shown in Fig.  12.3a. For the subsequently used mathematical mapping, the coordinate origin was also transferred to the 
center of the left notch. Due to the previously mentioned unreliability, recorded data on and near the edge of the notch were 
not employed. Only 2,200 of the available 17,666 v-displacements were selected randomly and used. Their source locations 
are shown in Fig. 12.3b. The region of Fig. 12.3b is denoted as region R*. Like most experimental data, the measured data 
incorporate some noise which necessitate collecting more measured input values than the number of unknown coefficients 
of a stress function. In addition to the selected v-displacements associated with Fig. 12.3b, xy D 0 was imposed at each of 
12 equally-spaced discrete locations along the left vertical traction-free edge of the plate and along the horizontal line of 
symmetry, y D 0. The total number of equations (side conditions), mC q, where m D 2,200 and q D 24, exceeds the number 
of real coefficients, 2(N C 1), producing an overdetermined system which can be solved using a least-squares. The system 
was solved in MATLAB using the backslash ‘\’ operator. 

12.3.3 Evaluating Number of Coefficients to Employ 

The coefficients, Aj D aj C ibj, were evaluated using Eqs. (12.9) through (12.10) to map the physical plane into the unit circle 
in the —-plane. The unreliable v-displacement values on and near the boundary of the side notch motivated using only v-
displacements originating at locations shown in Fig. 12.3b. The magnitude of the complex coefficients, Aj, were determined 
from Eq. (12.14) using the measured v-displacement data located inside the region R*, Fig.  12.3b, and imposing zero shear 
stress discretely along the outer left vertical free surface and the line of symmetry, y D 0. The number of real coefficients, 
2(N C 1), to retain was selected to be 6 complex (12 real) coefficients [1]. 

12.4 Results 

Table 12.1 shows the calculated values of constitutive parameters using Airy stress function scheme and DIC displacement 
data. LMA requires two initial estimates of P in order to calculate J and begin iterations. Genovese et al. [14] evaluated the 



80 A. Alshaya et al. 

Table 12.1 Calculated values of constitutive properties using inverse method and airy stress function scheme 

Parameters First initial guess % error  Second initial guess % error  Calculated values Final % error 

E1 (GPa) 181 80.0% 110 10.0% 103 2.9% 
E2 (GPa) 39.8 60.0% 22.4 20.0% 22.3 10.4% 
G12 (GPa) 4.61 60% 2.59 20.0% 2.58 10.4% 
v12 0.167 10% 0.122 20.0% 0.140 7.9% 

Target values of elastic constants are E1 D 101 GPa, E2 D 24.9 GPa, G12 D 2.88 GPa, v12 D 0.152 [1] 

effect of initial estimates on the number of iterations using FEMU-U in an overdetermined system and found that poor initial 
estimates increased the iterations required for minimization, but minimization was eventually achieved. Although evaluation 
of initial estimates is beyond the scope of this investigation, an informal analysis showed lack of convergence for poor initial 
estimates, primarily because the rate of convergence was different of each constitutive parameters. 

12.5 Summary, Discussion and Conclusions 

A new inverse problem formulation is developed using the Airy stress function, Levenberg-Marquardt Algorithm, and DIC 
measured displacement to determine the constitutive properties of a graphite/epoxy laminated composite loaded vertically. 
The primary advantage of this new formulation is the direct use of displacement data, eliminating the need for numerical 
differentiation when strain data is required. The inverse method algorithm determined the constitutive properties with errors 
range from 2% to 10%. 
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