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A B S T R A C T

Conversion of lignocellulosic biomass to electricity using fuel cell technologies is a promising but challenging
research topic for sustainable electricity production. This is because that lignocellulosic biomass generally
cannot be directly used as a fuel for electricity generation in a conventional fuel cell with high efficiency. Typical
fuel cells that can convert lignocellulosic biomass to electricity under mild conditions ( < 100 °C) include
microbial fuel cells (MFC) and novel direct biomass fuel cells (DBFC) such as that mediated by polyoxome-
talates (POMs) developed recently. However, the efficiency and power output for these low-temperature fuel
cells still need to be improved for practical applications. In this review, we focus on the research advances of
electricity generation in fuel cells that can be operated at low temperatures. More specifically, we discussed the
progress, challenge and perspectives of biomass-fueled MFCs. Recent interesting researches on DBFC were also
highlighted in terms of the efficiency, principles, and technological obstacles. As concluded in this work,
lignocellulosic biomass is a promising feedstock for fuel cells because it is renewable, carbon neutral, and
sustainable. However, the power density of lignocelluose-fueled MFC are usually far below that required for
commercial applications. Improving fermentable sugar release from lignocellulosic biomass and increasing the
cell output power are the main research points. DBFC can obtain a high theoretical exergy recovery; however, it
is still in its early stage of development with low efficiency. More research should be focused on the electrode
development, cell design, parameter optimization, process integration, as well as understanding fundamental
process mechanisms.

1. Introduction

Electricity is one of the essential forms of energy that dictates
quality of life in modern society. Demand for electricity continues to
grow as a result of the increase in global population and development
of third-world nations [1]. In early days, electricity was generated using
hydro power at remote dams or fossil fuels through combustion to
drive turbines [2]. Fossil fuels are still the major energy source for
electricity production. Approximately 66% of electricity is produced
from fossil fuels, including 33% from coal and 33% from natural gas in
2015 in the United States (US Energy Information Administration,
http://www.eia.gov/tools/faqs/faq.cfm?id=427 & t=3, last accessed
July 20, 2016). However, conventional fossil-fuel-driven power plants
are facing increased challenges due to emissions of pollutants and
greenhouse gases. Thus, sustainable and environmentally friendly

pathways for alternative electricity production using renewable
resources must be developed.

Lignocellulosic biomass is a renewable natural resource that can be
sustainably produced in large quantities in many regions around the
world. The United States alone has the potential of sustainably
producing 1.3 billion dry tonnes of lignocellulosic biomass annually
from forest and agricultural lands [3]. This is equivalent to 2 trillion
kWh of electricity (assuming 30% conversion efficiency from thermal
energy to electricity), which is approximately 50% of the total U.S.
electricity production in 2014. Electricity generation from lignocellu-
losic biomass has already been in commercial practice using combus-
tion or gasification together with a steam or gas turbine (Fig. 1).
However, distributed operation at relatively small scale is preferred due
to the low energy density of lignocelluloses.

Fuel cell technology attracted great interest in recent years for
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clean, portable, alternative electricity production and is suitable for a
variety of applications. Lignocellulosic biomass-energized fuel cells can
be classified into two major groups: indirect biomass fuel cells (IDBFC)
and direct biomass fuel cells (DBFC). IDBFC, which has been inten-
sively studied in recent years, refers to fuel cell technology that requires
pre-converting biomass to usable fuels such as sugars (e.g., glucose and
xylose), syngas, biogas, or biochar, for subsequent electricity genera-
tion in fuel cells [4]. IDBFC included solid oxide fuel cells (SOFC) and
direct carbon fuel cells (DCFC) which are operated at high tempera-
tures, as well as microbial fuel cells (MFC) operated at low tempera-
tures. DBFC is a new technology that can produce electricity using
biomass directly as fuel without preconverting or processing. DBFC
technology is new with only limited research being carried out [5–8].
Low temperature fuel cells offer many advantages for many distributed
applications, in this review we, therefore, focus on electricity genera-
tion from biomass via MFC and DBFC operated under mild conditions.
The aim of this work is to present some basic principles, technological
challenges, and future developments of these technologies.

2. Overview of lignocellulosic biomass and low temperature
biomass fuel cells

Lignocellulosic biomass generally can be divided into two cate-
gories: woody biomass (including forest harvest residues and dedicated
short-rotation woody crops) and herbaceous biomass (including agri-
culture residues such as straw and corn stover and energy crops such as
switchgrass). Ligncellulosic biomass is renewable, carbon neutral in
terms of reduction of CO2 emission, and sustainable [9]. The major
elemental compositions of lignocelluloses are C, H, O, N, P, and S. The
elements C, H, and O mainly come from the three major components of
lignocelluloses (cellulose, hemicelluloses, and lignin); N, P, and S
mainly come from the minor component, such as protein. Dry
lignocelluloses commonly have a C content of approximate 50%, lower
than that of coal (75–90%) , and an O content of about 45%, higher
than that of coal ( < 20%). Lignocellulosic biomass has much higher
ratios of H/C and O/C than those of fossil fuels. Thus, the heating value
of lignocellulosic biomass is lower. For example, bituminous coal
generally has a higher heating value (HHV) of 26 MJ kg–1, while the
HHV of lignocelluloses biomass is usually less than 20 MJ kg–1 [10,11].
Moreover, lignocellulosic biomass usually has high moisture content.
Freshly cut wood typically contains 50% water by weight [12].

Lignocellulosic biomass is a complex natural material comprising
three major components—cellulose, hemicelluloses, and lignin—and
some minor components, such as extractives, protein, and ash. The
major components account for more than 80% of the total dry weight of

lignocelluloses [13,14]. However, different species of plants signifi-
cantly differ in the proportions of the major components [15]. Even
different parts of the same plant have different proportions of the
major components. Woody biomass contains more cellulose and lignin,
whereas herbaceous biomass has higher contents of hemicelluloses
(mainly xylan), extractives, and ash. Generally, woody biomass con-
tains 40–50% cellulose, 15–20% hemicelluloses, 20–35% lignin, and
0.2–1.1% ash, whereas herbaceous biomass contains 20–40% cellu-
lose, 20–40% hemicellulose, 10–20% lignin, and 2–17% ash. Cellulose
is a polysaccharide consisting of a linear chain of several hundred to
more than 10,000 β (1→4) linked D-glucose units. Hemicelluloses are
heteropolymers of several monosaccharide groups and uronic acid
groups, including hexoses such as D-glucose, D-galactose, and D-
mannose; pentoses such as D-xylose and L-arabinose; uronic acids such
as D-glucuronic acid, 4-O-methyl-D-glucuronic acid, and D-galacturonic
acid; and to a lesser extent, L-rhamnose, L-fucose, and various O-
methylated neutral sugars [16]. Lignin is an aromatic polymer com-
posed of three basic monomeric units: p-hydroxyphenyls (H), guaicyls
(G), and syringyls (S), which vary between species and cell tissue type
[17]. Lignin has higher carbon content than cellulose and hemicellu-
loses, thus higher heating value. More details on the structures of
cellulose, hemicelluloses, and lignin can be found in literatures
[16,18,19].

In the three types of IDBFC (Fig. 1): microbial fuel cells (MFC),
solid oxide fuel cells (SOFC), and direct carbon fuel cells (DCFC), only
MFC can be operated at low temperatures. MFC use cellulose-degrad-
ing organisms with the addition of exogenous cellulase enzymes to
produce electricity [20–23]. Lignocellulosic biomass need to be hydro-
lyzed to sugars to achieve high efficiency by microorganisms. The
diversity of microorganisms in MFCs makes it possible to achieve near
complete utilization of all biomass components, including lignin. DBFC
can produce electricity from lignocelluloses directly with less exergy
destruction because no external processing is required. Due to the
complex structure of lignocelluloses and lack of efficient catalysts to
effectively oxidize C-C bonds, DBFC may produce low power output.
Research on DBFC is still in its early stage and this type of fuel cell
shows great promising.

The performance of a fuel cell is usually characterized by several
output parameters, such as open circuit voltage (OCV), current density
(CD), power density (PD), and coulombic efficiency (CE). These terms
are defined as follows: open circuit voltage is the maximum voltage
available from a fuel cell at zero current in V or mV; current density is
the current per unit area of electrochemical-active electrode (anode) in
mA cm−2; power density is power output per unit area or volume in
mW cm−2 (or W cm−2) coulombic efficiency, also called Faradic effi-

Fig. 1. Different pathways for electricity production from lignocellulosic biomass.
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ciency. It is the percentage of total produced coulombs to the
theoretical amount of coulombs available from the fuel. The cell
efficiency will be discussed regarding to these parameters.

3. Microbial fuel cells (MFC)

3.1. Principles of MFC

MFC as a bio-electrochemical system convert bio-convertible
chemical compounds to electricity under the catalytic activity of
micro-organisms [24]. The concept of MFC can be traced back to as
early as 1911 when Potter found that decomposition of organic
compounds by micro-organisms was accompanied by liberation of
electrical energy [25]. However, not until the 1980s did MFC attract
attention for treating wastewater. With improved power output, MFC
became promising for practical applications in the past decade [26].
The basic principles of a lignocellulosic biomass-fueled dual-chamber
MFC are shown in Fig. 2. Biomass is first converted to substrate fuels
such as glucose, xylose, acetate, which are utilized as carbon sources by
micro-organisms. The MFC consists of an anode, a cathode, a proton or
cation exchange membrane (PEM or AEM), and an external electrical
circuit. In the anode chamber, the micro-organisms convert the fuels
into CO2, protons, and electrons. The electrons are transferred to an
insoluble electron acceptor, the anode, via redox mediators and then
flow through an electrical circuit with a load to the cathode. Electrical
power thus is generated by the potential difference between the anode
and cathode. In the anode chamber, the protons flow through PEM to
the cathode, where they combine with oxygen and electrons to form
water [27]. The micro-organism is the “bridge” linking between
chemical energy of the substrate compounds and electric energy.

Various micro-organisms have been used in MFC as listed in
Table 1. They obtain energy to support their life by transferring
electrons produced from the oxidation of organic compounds to
metabolic products and finally to CO2 in a MFC [28].
Thermodynamically, this energy comes from the change of free energy
(ΔGox) for the oxidation of the substrates by exogenous oxidants.
Respiration and fermentation are two identified major metabolic
pathways for electron transfer [28]. However, the mechanism of anodic
electron transfer has not been clearly understood and identified.
Electron transfer between a microbe and an electrode can be possibly
mediated by (a) a direct connection of the active center of the cell
membrane enzyme to the electrode; (b) biological nanowires of 2–
3 mm long called pili, made of fibrous protein structures; or (c) added
or naturally occurring redox active species that are stable in two redox
states and able to quickly diffuse in and out of the enzymatic channels,
hence effectively shuttling electrons from the enzyme active site to the
electrode surface [29]. We are not going to analyze this issue in depth
in this review. Interested readers are referred to published studies
instead [26,28–32].

3.2. Biomass-derived substrate fuels for MFC

Many organic compounds, such as cellulose [33], cattle manure
[34,35], pretreated corn stover [20] and marine algae [36], can be
directly used in MFC for electricity generation. However, many micro-
organisms are not capable of efficiently hydrolyzing cellulose anaero-
bically and electrochemically active to use anode as an electron
acceptor, which results in a low MFC power density [37]. For example,
when 1 g L−1 rice straw was used directly as fuel, Gurung and Oh found
that the maximum power density was only 0.019 mW cm−2 [38]. Using
a novel three-chamber MFC, Krishnaraj et al. achieved a maximum
power output of 8.78 W m–3 at 20.95 A m–3 and 6.73 W m–3 at 17.28
A m–3 with sugarcane bagasse and corn cob as substrates, respectively.
However, these output powers are too low to be meaningful for
commercial applications [39]. To improve MFC efficiency, a pre-
hydrolysis step is often used to obtain monosaccharides or other
fermentable compounds, such as degraded phenolic compounds,
organic acids including acetic acid from hydrolysis of acetyl groups,
and furan derivatives such as furfural and 5-hydroymethylfurfural
(HMF) from sugar degradation (Table 1). Pre-hydrolysis always
simultaneously produces various types of fermentable compounds for
MFC.

Sugars, especially glucose, are the most important biomass-derived
fuels for MFC. Most micro-organisms have developed mature meta-
bolic system to utilize glucose for energy production.
Stoichiometrically, 24 electrons are released by complete oxidization
of each molecule of glucose (Table 2). PD of glucose-fueled MFC ranges
from thousandth to a fraction of mW cm-2 (Table 1) depending on the
micro-organisms, culture conditions, fuel cell designs, operation mod-
els (batch, fed-batch, or continuous), terminal oxidizing agents, and
other factors. However, glucose is an easily fermentable substrate that
can be consumed by many competing metabolisms, such as fermenta-
tion and methanogenesis. These metabolic pathways do not produce
electricity and thus can reduce CE [40].

Hydrolysis of hemicelluloses produces a variety of sugars (including
hexose and pentose), uronic acids, and acetic acid. These organic
compounds can also be promising carbon sources for MFC. The
maximum PD from several monosaccharide carbon sources, i.e., six
hexoses, three pentoses, two uronic acids, and one aldonic acid
(Table 1), ranged from 0.1240 to 0.277 mW cm-2, with a CD range of
0.76–1.18 mA cm-2 and a CE range of 21–37%. D-mannose produced
the lowest maximum PD and D-glucuronic acid the highest (Fig. 3)
[41]. The PD generated by these biomass-derived monosaccharides is
greatly dependent on the metabolic ability of the bacteria in using these
compounds. Micro-organisms often need time to adapt to a new carbon
source. Very long adaptation time is required for mixed bacteria to use
arabinose compared with glucose [41]. Xylose is the most abundant
pentose contained in hydrolysates of herbaceous biomass and hard-
woods. Fortunately, most MFC bacteria can easily utilize xylose as a
carbon source. PD reached 0.233 mW cm-2 with a CE of 31% when
using pure xylose, even higher than using glucose [41]. CE could be
enhanced to 54% by adopting continuous operation with a hydraulic
retention time of 38 h [42]. Uronic acids are usually found in dilute
acid hydrolysates of lignocelluloses; however, little work on uronic
acids as carbon sources for MFC were carried out. On the other hand,
D-glucuronic acid produced higher power density than sugars [41].

Phenolic compounds from lignin degradation are considered as
inhibitors to micro-organisms [43], but these compounds can be used
for MFC because some bacteria are capable of degrading phenol. The
constituent of phenolic compounds differs depending on lignin struc-
ture. Typical phenolic compounds in acid hydrolysates of lignocellu-
loses are vanillin, syringaldehyde, catechol, 4-hydroxybenzoic acid, and
their derivatives [43,44]. Few works mentioned the potential of these
compounds as fuels for MFC. A single-chamber MFC produced a
current of 178 μA using veratryl alcohol (VA) at 500 mg L−1 in fed-
batch mode [45]. PD could be significantly increased when using a

Fig. 2. Principles of lignocellulosic biomass fueled dual-chamber MFC with addition of
electron mediator.
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mixture of glucose and VA. Lignin can also be used as electron
mediator to improve PD [46] because the benzene ring has abundant
electron distributions.

Other by-products from hydrolysis of lignocelluloses were also
promising carbon sources for MFC. Acetate (acetic acid) produced
from hydrolysis of acetyl group on hemicellulose backbone is an ideal
substrate for MFC because acetate can be easily assimilated by
electroactive bacteria. An acetate-fed MFC showed a high CE
(72.3%), much higher than those of butyrate (43.0%), propionate
(36.0%), and glucose (15.0%) [40]. Furfural, another acid hydrolysis
by-product, was used as the sole fuel in both the ferricyanide-cathode
and the air-cathode MFC. A PD of 0.0361 mW cm−2 and CE of 30.3%
were obtained in an air-cathode MFC using 6.68 mM furfural.
Increasing furfural concentration resulted in somewhat increased
maximum PD [47].

Biomass hydrolysates are mixtures of sugars, phenolic compounds,
organic acids, and sugar derivatives, all have been directly used in MFC
[48–51]. Reported PD ranged from 0.01 to more than 0.1 mW cm-2

(Table 1), with CE ranging from 15–40%, depending on MFC types and
the micro-organisms used. PD achieved using a hydrolysate from
Enteromorpha prolifera, an algae biomass [48], and a steam-exploded
corn stover hydrolysate [49] were similar to those achieved using
monosaccharides. A higher PD was also reported using a biomass
hydrolysate than using only xylan or carboxylic acids [51], perhaps due
to the presence of phenolic compounds that mediate electron transport.
Nevertheless, degradation products such as furan derivatives and
phenolic compounds present in hydrolysates are usually inhibitive to
micro-organisms, particularly to pure culture [52]. This has become
one obstacle to the development of biomass-energized MFC, as will be
discussed later.

3.3. Factors affecting performance of MFC

3.3.1. Microorganism, substrate fuels, and operation conditions
Although some yeasts, such as Saccharomyces cerevisiae [53,54],

Arxula adeninivorans [55] and Candida melibiosica [56,57], have

been employed as catalysts in MFC, electricity-generating bacteria,
such as Actinobacillus succinogenes [58], Clostridium species [59,60],
Escherichia coli [61–63], Geobacter species [64–66], Klebsiella pneu-
moniae [67,68], Pseudomonas species [69,70], and Shewanella species
[71–73], are commonly used. Both pure culture and mixed bacterial
communities have been attempted (Table 1). Mixed bacterial commu-
nities often produced much higher PD and consumed more biomass
hydrolysate than pure culture because pure culture is incapable of
metabolizing a diverse of compounds in hydrolysates. For example,
Geobacter species primarily can use only organic acids, ethanol, and
aromatic compounds [74]; Pseudomonas can use only glucose but
cannot utilize fermentative products such as acetate [75]; Shewanella
species can only partially oxidize a limited number of organic acids,
such as lactate, pyruvate, and acetate under anaerobic conditions [74];
Enterobacter sp. primarily use glucose [76]; and Saccharomyces
cerevisiae showed very low utilization of pentose such as xylose
[77,78]. In using mixtures of microbial consortium, electrons are
transferred from substrates to electrode via an electron transport
system that consists of a series of components in the bacterial
extracellular matrix or together with electron shuttles in the bulk
solution [41]. Bacteria in the consortium played different roles in
consuming hydrolysate as found in a two-chamber MFC using a
hydrothermal hydrolysate of wheat straw [50]. The consortium mainly
consisted of Bacteroidetes (40%), Alphaproteobacteria (20%), Bacillus
(20%), Deltaproteobacteria (10%), and Gammaproteobacteria (10%),
while the suspended consortia were predominately Bacillus (22.2%).
The microbial community composition may change after MFC opera-
tion depending on niches, sulfate-reducing bacteria accounted for large
relative abundance [79].

Substrate fuel is an important factor for power generation in MFC.
Various biomass-derived compounds have been used. Theoretical
anodic half-cell reactions and standard changes in Gibbs free energy
for different biomass-derived substrates are shown in Table 2. Phenolic
compounds and furfural theoretically can provide more electrons and
higher Gibbs free energy changes than carbohydrates under complete
oxidation. However, the practical PD for a giving substrate is greatly

Table 2
Theoretical anodic half cell and overall oxidation reactions for different biomass-derived substrates used in MFCs.

Substrates Theoretical anodic half cell reaction and overall reaction Electron released (mol kg−1 substrate) Standard ΔG for overall reaction (kJ kg−1 substrate)

Hexoses C6H12O6+6H2O→6CO2+24H
++24e− 133.3

Glucose C6H12O6+6O2→6CO2↑+ 6H2O(l) −15699.60a

Galactose −15652.98a

Mannose −15696.33b

Pentoses C5H10O5+5H2O→5CO2+20H
++20e− 133.3

Xylose C5H10O5+5O2→5CO2↑+ 5H2O(l) −15754.41b

Arabinose −15809.43b

Uronic acids
Glucuronic acid C6H10O7+5H2O→6CO2+20H

++20e− 103.1
Galacturonic acid C6H10O7 + 5O2→6CO2 ↑+5H2O(l) 103.1

Acetic acid CH3COOH + 2H2O → 2CO2 +8H++8e− 133.3
CH3COOH+ 2O2→2CO2 ↑+ 2H2O(l) −14150.08a

Lactic acid C3H6O3+3H2O→ 3CO2 +12H++12e− 133.3
C3H6O3+3O2→3CO2 ↑+3H2O(l) −15000.22a

Phenol C6H6O+11H2O→ 6CO2 +28H++28e− 297.9
C6H6O+ 7O2→6CO2↑+ 3H2O(l) −31633.41a

Vanillin C8H8O3+13H2O→ 8CO2 +34H++34e− 223.7
C8H8O3+ 17/2O2→8CO2 ↑+4H2O(l)

Furfural C5H4O2+8H2O→ 5CO2 +20H++20e− 208.3
C5H4O2+5O2→5CO2↑+ 2H2O(l) −22332.64c

a calculated with the standard Gibbs free energy of formation from Lange's Handbook of Chemistry [166];
b calculated with the standard Gibbs free energy of formation from ref. [167];
c calculated with the standard Gibbs free energy of formation from ref. [168].
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dependent on its “digestibility” by the micro-organisms. The bacteria
indeed showed preference in using carbon sources. Generally speaking,
acetate is the most preferred substrate with relatively high CE [37].
Sugars are also good substrates. Hexoses are usually more preferen-
tially used by bacteria with higher utilization rates than pentoses [80].
Sugar degradation products and phenolic compounds are more difficult
to use and toxic to micro-organisms, as will be discussed later. For
utilizing phenol and phenolic derivatives, the micro-organisms have to
secrete enzymes such as monooxygenases that can decompose aromatic

toxic compounds [81]. The substrate concentration also shows im-
portant influence. The maximum power obtained at different initial
substrate concentrations often can be fit to a Monod-type curve [49].

pH is an important factor influencing MFC power generation [82–
85]. pH changes in anodic and cathodic chambers are negligible when
consumption rate of protons at the cathode equals production rate at
the anode. However, pH is often reduced (increased proton concentra-
tion) in anode chamber while increased in cathode chamber.
Controlling pH shifts at the cathode and anode by using a phosphate
buffer (pH 7.0) can increase current output by 100–200% [86].
Optimal pH for producing maximum power was 8–10 in an air-cathode
MFC fueled with acetate. Furthermore, the anodic microbial process
preferred a neutral pH, whereas the cathodic reaction was improved at
a weak alkaline pH [82]. Therefore, using a buffer can improve the
efficiency of MFCs because it can stabilize pH to facilitate microbial
metabolic activities as well as compensate for the slow proton transport
rate to improve cathodic reaction [27].

Other operational factors such as operation mode (batch, fed-batch,
continuous flow) [87], temperature [88–90], and startup cultivation
can also influence the performance of pure sugar-fueled MFC.
However, limited studies were carried out on the biomass hydroly-
sate-fueled MFC.

3.3.2. Final electron acceptor
In most MFC, oxygen (air) is used as the final electron acceptor for

the cathodic reaction (air-cathode) (Table 1). Thus the power output of
an air-cathode MFC strongly depends on the level of dissolved oxygen
(DO). DO supply was a limiting factor to cathode reaction in a
mediator-less MFC with external resistance lower than 500 Ω due to
the limitation in oxygen mass transfer [86]. Using a dissolvable
electron acceptor such as ferricyanide can improve electricity output.
Maximum power output was increased by 50–80% when using
ferricyanide instead of dissolved oxygen [91]. The reported PD reached
as high as 0.72 mW cm-2, compared with less than 0.1 mW cm-2 using
DO [27], perhaps due to the greater mass transfer of ferricyanide and
lower activation energy for the cathodic reaction [91]. Other electron
acceptors such as H2O2 [92] and potassium permanganate [93] also
have been used. PD was greatly improved using H2O2 in a two-
compartment continuous-flow MFC compared with that using aeration
(oxygen) [92]. Even higher PD was produced using potassium per-
manganate as an electron acceptor than that using potassium ferricya-
nide [93]. However, these “powerful” electron acceptors are often much
more expensive than oxygen.

3.3.3. Electrode materials
The materials of electrodes affect the performance and cost of MFC.

The most commonly used materials for anodes are carbon-based, such
as granular activated carbon, graphite rod, graphite fiber brush, carbon
paper, cloth, felt, and reticulated vitreous carbon (RVC). Each of these
electrodes has its own advantages and disadvantages [94]. The anode
materials should possess not only good electron conductivity, but also
high availability for bacteria attachment. The surface properties of an
anode, such as roughness, porosity, and surface wettability, influence
the formation of biofilm and subsequent power output. The amount of
bacteria attached is proportional to the surface porosity of carbon
papers [95]. Materials with hydrophilic surfaces are more suitable for
anodes. The commonly used carbon materials have limited surface
areas for biofilm growth and subsequent electron transfer [96]. In
recent years, nano-composite materials, such as nano-structured
carbon, nanofibers, and nanotubes, have attracted great interest as
electrode materials because they are more conductive and mechanically
stable with larger surface area and higher electrochemical catalytic
activity compared with the conventional carbon electrodes [97]. When
using activated carbon nanofibers (ACNFs) as anode instead of carbon,
higher power output with higher substrate utilization efficiency was
obtained [96]. However, these nano-structured carbon electrodes were

Fig. 3. Power densities as a function of current density in MFC using different carbon
sources that can be derived from lignocellulosic biomass. A: hexoses; B: Pentoses; C:
uronic acids (Redrawn after [41]).
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found toxic to the microbial consortium in the biofilm, which reduces
the long-term performance of MFC [97].

For an air-cathode, Pt-coated carbon materials are usually used
(Table 1). The Pt deposited on an air-cathode can improve power
output by increasing the affinity to oxygen and decreasing the activa-
tion energy of the cathodic reaction [98]. Modification of the cathode
with metal ions such as Fe(III) and/or Mn(IV) can also greatly improve
electricity generation [99,100]. Modifying the cathode with the addi-
tion of a diffusion layer to increase cathode surface area can improve
electricity generation because diffusion of oxygen in the electrode is
important. The maximum power produced from a single-chamber MFC
using neutral or acid hydrolysates of corn stover can be increased by
more than 100% by adding a diffusion layer to the cathode [49].

A statistical analysis using PCA/UMR approach was conducted for a
Shewanella oneidensis MFC to discern the relative importance of
various factor on MFC performance [101]. Buffer pH is a main
parameter determining MFC performance. Reducing carbon source
concentration has a positive effect. Electrode area and compartment
volume have the highest effect on maximum power. Analyte content
and anode material mostly affect the maximum current.

3.4. Obstacles in using lignocellulosic biomass for MFC

3.4.1. Biomass recalcitrance for sugar release
There are generally two ways to release sugars from lignocellulosic

biomass, namely acid hydrolysis and enzymatic hydrolysis. However,
the recalcitrance of lignocelluloses is the main obstacle that prevents
efficient release of sugars, especially glucose, from biomass to energize
MFC due to its hierarchical structure that resists the attack of
chemicals or enzymes to its structural polysaccharides [102]. The
hemicelluloses and lignin strengthen the cell wall. Crystalline cellulose
is highly ordered due to the hydrogen bond network and is very stable
and difficult to be permeated even by water molecules [103]. Moreover,
anatomically plant cell wall is largely honeycomb-like and composed of
distinct layers. This multilayered structure acts as a natural barrier to
further prevent chemicals and enzymes from permeating into the wall
[18]. Therefore, severe conditions (high temperature or acid concen-
tration) must be employed [104], which results in substantial sugar
degradation. Efficient enzymatic hydrolysis of lignocelluloses requires
pretreating biomass to increase cellulose accessibility. Unfortunately,
pretreatments are usually energy intensive with high cost. Interested
readers are referred to published papers on biomass recalcitrance
[13,105] and biomass pretreatments [14,106–110].

3.4.2. Inhibition by inhibitors present in the hydrolysate
Another obstacle for using lignocellulosic biomass hydrolysate in

MFC is the inhibition of micro-organisms by toxicants. This inhibition
is more problematic for pure culture than for a bacterial consortium.
Theses toxicants are formed during the process of producing biomass
hydrolysate via degradation reactions of hydrolysis products. They
include sugar degradation products such as furans (furfural, 5-HMF)
and organic acids (including acetic acid, formic acid, and levulinic
acid), and phenolic compounds from lignin degradation. The mechan-
isms of these compounds inhibit fermentation performance of yeast
such as Saccharomyces cerevisiae and bacteria such as Escherichia
coli have been intensively studied [43,111,112]. However, their
inhibition on MFC performance have not been well investigated.
Most of these by-products can be utilized as substrate fuels when
glucose is used up. Mixed bacteria such as active sludge or screen
bacterial consortium are required to obtain efficient power output.
HMF, trans-cinnamic acid, and 3,5-dimethoxy-4-hydroxycinnamic
acid at concentrations up to 10 mM did not affect MFC electricity
generation using glucose. Syringaldeyhde, vanillin, trans-4-hydroxy-3-
methoxy, and 4-hydroxy cinnamic acids inhibited electricity generation
at concentrations above 5 mM, whereas 2-furaldehyde, benzyl alcohol
and acetophenone at concentrations less than 0.2 mM (Fig. 4) [52]. On

the other hand, furfural did not decrease voltage output when
concentration was increased from 0.1 g L−1 to 2 g L−1 (20.8 mM)
[113]. Phenolic compounds might improve MFC efficiency. For exam-
ple, 20% higher PD with higher CE were obtained using a wheat straw
hydrolysate than those using a synthetic medium [51]. A similar
phenomenon was observed when humic acid was added to a xylose-
fueled two-chamber MFC [114]. This is because the aromatic ring
structure of phenolic compounds can accept an extra electron and
thereby facilitate the shift between oxidized and reduced states [115].
The inhibitory effects of hydrolysate by-products also depend on the
bacteria consortium. More investigations of the subject are needed.

Another inhibition by hydrolysate may come from the ash of
biomass and salts from hydrolysate neutralization. Lignocellulosic
biomass usually has an ash content ranging from 0.2–17%, depending
on species [13]. The determined metal ions contained in the biomass
ashes mainly include Na+, K+, Ca2+, Mg2+, Mn2+, Al3+, Fe3+, and Ti4+

[116]. Most of these metal ions can be dissolved in the hydrolysate
during acid hydrolysis. The acid hydrolysate usually needs to be
neutralized before use. A great amount of salts such as gypsum is
produced. These salts may inhibit micro-organisms to affect MFC
performance. High salt concentration can create high osmotic pressure
and inhibit the growth of micro-organisms. Some metal ions may show
negative influence on the PEM or AEM by forming inorganic salt
precipitations, thus fouling PEM [117,118]. The precipitation of
calcium and magnesium may cause an inorganic scaling on the surface
of AEM, thus increasing the membrane resistance to hydrogen ions
[119].

4. Direct biomass fuel cells (DBFC)

Direct biomass fuel cell (DBFC) refers to technologies that can
directly convert polymeric natural biomass, such as trees, grasses,
agricultural residue, algae, and other biological material, to electricity.
At ideal conditions, the natural biomass could be directly used as the
fuel in fuel cells without purification or chemical pretreatment.
However, current direct biomass fuel cell technologies can use only
purified biomass, such as starch or cellulose. For example, purified
biomass such as starch, cellulose or lignin were dissolved under
alkaline conditions and used as fuels with noble metals (e.g., Pt, Pd,
or Au) as catalysts in proton exchange membrane fuel cells (PEMFCs)
[120–122]. Certainly, fuel oxidation is not complete because noble
metal catalysts lack the ability to efficiently oxidize large molecules

Fig. 4. Effects of furan derivatives and phenolic compounds on electricity generation in
MFC with glucose as a carbon source. 1: 5-HMF; 2: vanillin; 3: trans-cinnamic acid; 4:
3,5-dimethoxy-4-hydroxy cinnamic acid; 5: syringaldeyhde; 6: trans-4-hydroxy-3-meth-
oxy cinnamic acid; 7: 4-hydroxy cinnamic acid; 8: furaldehyde; 8: acetophenone; 10: 3,4-
dimethoxybenzyl alcohol (data from [52]).

X. Zhao et al. Renewable and Sustainable Energy Reviews 71 (2017) 268–282

275



electrochemically. For this reason, PD is substantially lower than using
liquid alcohol fuels. While directly using biomass in fuel cells provides
a renewable and more sustainable way for energy production, many
challenges and constraints remained.

4.1. Technical difficulties of direct biomass utilization in fuel cells

Biomass is intrinsically different from small-molecular fuels, such
as methanol, ethanol, or glycerol. First, lignocellulosic biomass is in the
form of a solid and intrinsically insoluble in water or most organic
solvents. Most biomass polymers require pretreatment and dispersal in
solution to overcome mass transfer limitation of large molecules. For
example, native cellulose is inactive in commercial PEM fuel cells
because of the rigid crystalline structure, and it also resists enzymatic
hydrolysis in MFC owing to the lack of available hydrolysis sites [123].
Second, there is a lack of efficient catalyst for polymeric biomass
degradation and oxidation at low temperatures. Current noble metal
catalysts (e.g., Pt, Pd, and Ru) are not able to effectively cleave C–C
bonds in organic molecules at low temperatures [124,125]. PEM fuel
cells have very low power output and energy efficiency [126]. As a
result, the natural polymeric biomass (e.g., starch, cellulose, lignin)
cannot be effectively electro-oxidized in conventional low-temperature
PEM fuel cells. Finally, many contaminants in raw biomass can be
poisonous to fuel cell catalysts. The noble metal catalysts show low
resistivity to the impurities in biomass, even at ppm levels [127,128].
Catalytic activities can be irreversibly lost because of the poison
elements or intermediate products during biomass oxidation, such as
CO. Therefore, raw biomass may require a series of process purification
and pretreatment steps prior to being applied in fuel cells, such as
torrefaction, acid/alkaline treatment, or pyrolysis [129–132].
Polymeric biomass can be degraded to small-molecule fuels such as
CH4 or ethanol by fermentation, or converted to bio-oil or gases by
pyrolysis or gasification [133–135]. Undoubtedly, the economic benefit
and environmental advantages of biomass are devalued due to the
pretreatments.

4.2. Photofuel cells (PFC)

A photofuel cell (PFC) is based on the mechanism of solar cells but
differs because the former is powered by fuels whereas the latter solely
depends on the conversion of solar energy. In solar cells, photosensitive
dyes are excited by absorbing light and inject the excited electrons into
conductive band of TiO2. Then, the I-/I3

- redox couple plays as an
electron shuttle that can accept electrons from external circuit on a
counter electrode (Pt), and it can deliver the electrons to oxidized dyes
in an electrolyte, leading to regeneration of the ground state dye
(Fig. 5). The redox couple is abandoned in PFC so that the dissolved
biomass fuels are directly oxidized by photo-excited holes on the TiO2

anode. The excited electrons go through an external circuit and are
accepted by O2 on the cathode (Pt). Therefore, the total reaction in a

PFC is the oxidation of biomass by O2, with light irradiation.
Various polymeric biomass fuels or bio-related materials can be

photo-decomposed in a PFC with an O2-reducing cathode, such as
soluble starch, carboxymethyl cellulose, lignosulfonic acid, and other
soluble small organic molecules [136–139]. The fuels should be either
liquid or soluble in water and are required to be highly concentrated.
The biomass fuels in PFC are photo-decomposed and almost stoichio-
metrically oxidized to CO2 as demonstrated by experiments using
methanol, ethanol, and glucose as fuels [140]. When the cathode was
replace with air, not pure O2, it could decrease the fill factor (FF) value
but still showed distinct PFC characteristics.

The output power is low in direct biomass-fueled PFC, usually less
than 0.1 mW cm-2. Actual open circuit voltage (Voc) is about two-third
or one-half of the theoretical value, or in some cases even lower.
However, Kaneko et al. recently constructed an n-semiconductor-metal
nanocomposite anode that had a Schotty-junction/ohmic contact effect
in PFC [141]. This design significantly improved the performance of
direct biomass PFC, with a power density of 2 mW cm-2. Because the
TiO2 anode can absorb only short wavelength light ( < 400 nm), the
PFC performance may be improved by introducing a new photo-
catalytic anode.

4.3. Liquid catalyst fuel cells (LCFC)

4.3.1. Principle of LCFC
Recently, Yulin Deng’s group at Georgia Institute of Technology

reported novel solar- or head-induced hybrid fuel cells that can directly
consume biomass without chemical pretreatment [5]. The new biomass
fuel cell employs polyoxometalates (POMs) in solution as a photo-
catalyst and charge carrier to realize a new pathway for direct biomass-
to-electricity conversion.

The novel direct biomass fuel cell consists of two liquid POM
catalyst solutions, a liquid catalyst fuel cell (LCFC), including a
common fuel cell equipped with a membrane electrode assembly
(MEA) and a transparent glass fuel storage vessel that can be pre-
irradiated with light (Fig. 6). The anode was fabricated with a simple
carbon electrode without Pt for POM solution discharging. In contrast,
the cathode can be constructed with noble metals with oxygen [5] or by
carbon with a different POM solution [6]. In the cathode, biomass-
POM electrolyte solution was irradiated by sunlight or heating until the
color changed from yellow to deep blue, and then pumped and
circulated in the anode cell.

The direct biomass-consuming LCFC can be powered by various
biomass types, such as starch, cellulose, switch grass, wood powder,
isolated lignin and polyols [5–8]. The power density can reach
51 mW cm-2 when fueled by fresh bush allamanda, similar to most
methanol fuel cells (Fig. 7), and is 3,000 times higher than cellulose
based MFC.

The catalysis mechanism is unique and different from a traditional
PEM fuel cell. The mechanism includes three major steps (see Fig. 8):

Fig. 5. Comparison of working principle of dye sensitive solar cell (DSSC) (a) and photo fuel cell (PFC) (b)(Redrawn after [138,169]).
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First, the H3PMo12O40 (PMo12) catalyst absorbs light to change the
valence state of Mo6+ to Mo5+ by forming a charge transfer complex
with organics as electron and proton donors. This process could be

accelerated by photo irradiation and thermal enhancement of sunlight,
described in Eq. (1):

Starch OH PMo O

Starch O HPMo Mo O HPMo Mo O

Oxidized starch oligomers

2 − + 2[ ] ⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

− − [ ] + [ ]

+

VI light or heat

VI V VI V
12 40

3−

11 40
3−

11 40
3−

(1)

Second, the PMo12 with Mo5+ releases an electron to the anode and
an H+ to the solution, and returns back to its original M6+ state. The
biomass with long polymeric chains are decomposed and oxidized to
small molecular products simultaneously. Finally, electrons reach the
cathode and are captured by oxygen to form water with H+. The overall
result is oxidation of organic biomass fuel by oxygen to produce
electricity and mediated by photo-catalysis using PMo12, which can
be described by following equations:

Andode Starch O HPMo Mo O HPMo Mo O

PMo O Oxidized starch oligmers e H

: − − [ ] + [ ] ⎯ →⎯⎯⎯⎯
2[ ] + + 2 + 2

VI V VI V anode

VI
11 40

3−
11 40

3−

12 40
3− − +

(2)

Cathode O e H H O: 1/2 + 2 + 2 ⎯ →⎯⎯⎯⎯⎯⎯
cathode

2
− +

2 (3)

4.3.2. Difference from traditional fuel cells
The direct biomass LCFC is a combination of solar cells, fuel cells,

and redox flow batteries, but has distinct differences from each.

(1) For a traditional solar cell, light energy is converted to electricity
directly via the photovoltaic effect when a semiconductor or dye on
the semiconductor is exposed to light [142,143]. However, for the
direct biomass-consuming LCFC, short-wave light excites POMs to
the excited state and is stored in the form of reduced POMs (i.e.,
chemical energy) via the photochromic reaction. Moreover, visible
and near-infrared light are absorbed by the solution and converted
to heat, which can also promote the redox reaction between
biomass and POM.

(2) The direct biomass-consuming LCFC also has a similar feature to
redox flow batteries [144,145] in that electrolyte solutions with
different valence states are used in the electrode cells. But the
cathode side is fabricated with a direct oxygen electrode, different
from redox flow batteries. Additionally, organic fuel is consumed in
LCFC, but organic fuel is not used in a traditional redox flow
battery. The overall reaction is the oxidation of organic fuel by
oxygen, which does not occur in redox flow batteries.

(3) The cell is different from a traditional PEM fuel cell where catalytic
reactions occur on the precious-metal-loaded anode. In direct
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Fig. 7. Voltage and power densities of different biomasses used as the fuels for POM-
mediated novel DBFC at 80 °C. Adapted from [6].

Fig. 8. Schematic illustration of the principle of the direct biomass-fueled LCFC with
PMo12 as the catalyst. Adapted from [5].

Fig. 6. Structure of the solar-induced hybrid liquid catalyst fuel cell (LCFC): (a) membrane electrode assembly (Nafion® 117 PEM, anode made of carbon cloth and cathode loaded with
Pt/C catalyst), (b) graphite bipolar plate, (c) acrylic plastic end plate, (d) transparent glass vessel with PMo12-starch solution, (e) pump, (f) oxygen inlet, (g) water and oxygen outlet.
Adapted from [5].
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biomass-consuming LCFC, the catalytic reactions are mediated by
POM solution, but not on the surface of a noble metal electrode.
The POM functions as a photo and thermal catalyst and charge
carrier takes away electrons from biomass while reducing its own
valence state to Mo5+ with light irradiation and thermal degrada-
tion. The electrons in the POM are then transferred through the
external circuit, and the POM reverts to its original Mo6+ valence
state.

The direct biomass LCFC offers many advantages over conventional
fuel cells. This new type of biomass fuel cell uses regenerative POM
solutions as catalyst without using a metal-catalyst-based electrode.
POM catalysis incorporates the photo-catalysis and thermal degrada-
tion of biomass in a single process. Furthermore, POMs are tolerant to
most organic and inorganic contaminants because they are robust and
self-healing [146]. As a result, the biomass fuels do not require pre-
purification treatment, which could substantially reduce fuel cost. In
brief, efficient, robust, and economic POM catalyst holds the key to
achieving a breakthrough in fuel cell technology.

The biomass-based LCFC is relatively new but shows very promis-
ing results. With this groundbreaking technology, raw biomass, such as
starch, cellulose, lignin, switchgrass, wood powders, algae, and even
city life wastes, can be directly converted to electricity at room
temperature [5–8]. High power output has been demonstrated directly
using raw biomass without purification or treatment. The catalyst
(POM) is extremely stable without contamination. This type of fuel cell
is noble-metal-free at the anode. It is expected that biomass-based
LCFC can be low cost and suitable for both small power units and large
power plants for sustainable energy production from biomass.
However, many challenges in both scientific research and commercia-
lization remain.

First, the electrode chemistry needs to be studied to optimize redox
reactions on the electrodes. For example, research indicates that the
presence of oxygen-containing functional groups on graphite electrodes
increases discharging current in a vanadium flow battery [147,148].
However, the electrode chemical modification has not been well
investigated in POM discharging fuel cells. In addition, POM acts as
both photo-catalyst and charge-carrier in the fuel cell. Transition metal
addend POMs are well known to be excited by absorbing light extended

to visible wavelength [149,150]. A large number of POMs with different
metal components, different structures, or different redox properties
can be synthesized and used for degradation of biomass in LCFC.
However, most POMs can absorb only low-wavelength light ( <
450 nm). To maximally use solar energy to effectively oxidize biomass,
POM with strong visible-light absorption should be developed.
Moreover, the real chemical reactions between POM and biomass
should be fully understood. By understanding the reaction mechanism,
high conversion efficiency of biomass to electric power can be achieved.

5. Perspectives

The performance and development stages of biomass-fueled MFC
and DBFC are shown in Table 3. MFC show relatively low PD (usually
lower than 0.5 mW cm-2), though its operation temperature is low and
various biomass-derived substrates can be utilized as fuels. MFC have
not been commercialized and face various technical challenges.
Lignocellulosic biomass usually needs to be hydrolyzed first to obtain
sugar substrates, but the production of lignocellulosic sugar is costly.
The production cost of sugar from biomass by enzymatic hydrolysis
was estimated at approximately $0.25/kg sugar [151]. However,
considering the collection, handling, and transportation of lignocellu-
losic biomass, the cost may be even higher. As estimated by Rabaey and
Verstraete [26], 1 kg of sugar on average contains 4.41 kWh of energy
or potentially 13×106 coulombs of charge, representing 1.06 kg che-
mical oxygen demand (COD), which can yield ~1 kWh of useful energy
that is worth up to € 0.16 in the European Union. Thus, using
lignocellulosic sugars to fuel MFC is not yet economically feasible. A
possible solution is to integrate MFC with a biorefinery for integrated
ethanol and electricity production—fermentable sugars are used to
produce ethanol, while the by-products (such as furfural, phenolic
compounds, and fermentative products) are used as fuels for electricity
generation. This can enable higher ethanol yields at high biomass
loadings in cellulosic ethanol biorefineries, improve water recycling,
and provide electricity production up to 25% of total biorefinery power
needs [113]. High cost of electrode materials is also a challenge for
commercial use of MFC. For air-cathode, a noble metal such as Pt must
be used to catalyze the reduction of oxygen. The anodes usually need
modifications to increase the biofilm attachment, and cathodes need to

Table 3
Comparison of different lignocellulosic biomass fueled fuel cells operated at low temperatures.

Fuel cell
type

Fuels Operation
temperature (°C)

Power density
(mW cm-2)

Developing stage Advantage Technical challenge

MFCa Acetate 15–40 0.004–0.2 Laboratory Mild operation temperature; nearly all
biomass components can be used as fuels;
possible to direct conversion biomass to
electricity

Very low power density; low rate of
electricity generation; high internal
resistance; high cost of electrode
materials

Sugar 0.002–0.72
Phenolic
compounds

0.0006–0.01

Biomass
hydrolyzate

0.01–0.4

Solid biomass 0.006–0.05
PFCb Soluble biomass,

sugar, alcohol
25 0.0001–2 Laboratory Direct use parts of biomass and wastes Output of most cell is very low; only

can utilize UV light currently
PEMFCc Parts of soluble

biomass
25–50 0.004–0.5 Laboratory Convenient and mild operation Low power density and efficiency

LCFCd Solid biomass 25–80 0.4–0.7 Laboratory Direct conversion of solid biomass to
electricity without external processing
units

Relatively low biomass oxidation
efficiency

a MFCs have been studied by many groups all over the world for several decades. Well-known groups in MFC study and development include Bruce Logan's group at the Pennsylvania
State University; Ioannis Ieropoulos’ group at University of the West of England; Derek R. Lovley’s group at University of Massachusetts; Jürg Keller's group at University of
Queensland; Korneel Rabaey's group at Ghent University; Hanqing Yu's group at University of Science and Technology of China; Xia Huang's group at Tsinghua University; Yujie Feng's
group and Aijie Wang's group at Harbin Institute of Technology, etc.

b Masao Kaneko's group at Ibaraki University (later institution of the Institute of Biophotochemonics Co. Ltd) in Japan are devoting to developing direct biomass conversion to
electricity using photofuel cell technology.

c PEMFC are usually fueled by gas fuels such as H2, or liquid fuels such as methanol. Direct conversion of solid biomass to electricity by conventional PEMFC usually showed very low
output power. No well-known group has been found for such research.

d Direct conversion of biomass to electricity using liquid catalyst such as polyoxometalates as an electron mediator and PEM as the polymer electrolyte was firstly proposed by Yulin
Deng’s group at Georgia Institute of Technology.
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intensify gas diffusion. The performance of MFC still need improve-
ment. Various issues have been observed even when pure glucose or
acetate is used as the substrate. One of the main bottlenecks is the
decrease in voltage caused by potential losses, including ohmic loss,
activation loss, bacterial metabolic loss, and concentration polarization
[152]. Nevertheless, these issues have not been well addressed. Much
work is needed to determine the influences of biomass-derived
substrates on power output and long-time running performance, cell
design, and electrode modification.

DBFC is a promising technology, but it is in early stages at
laboratory scale. Direct use of biomass offers a more economic,
environmentally friendly, reliable, and sustainable alternative than
other utilization pathways, however, it is usually less efficient. The
current issues of DBFC mainly include the following: (1) Low power
density of less than 1 mW cm-2, far from practical application. (2)
Inability to efficiently and completely utilize biomass substrates – The
noble metal catalyst used in PEMFC cannot cleave all chemical bonds
of biomass substrates. In addition, solid catalysts have low mass
diffusion. LCFC seems to solve this problem by using a liquid POM
catalyst, but the biomass oxidation efficiency still needs to be im-
proved; (3) Lack of mature technology to cope with the complexity of
biomass—Most of the fuel cells are well investigated by fueling with
pure chemical fuels, but raw biomass is a highly complex composite
containing impurities that can be poisonous to fuel cell catalysts. POM
catalysts in LCFC exhibit robust and self-healing property for most
inorganic or organic impurities; however, fundamental understanding
of the interactions between impurities and POM needs to be developed.
For successfully utilizing raw biomass in fuel cells, the catalyst should
have the characteristics of (a) oxidizing various organic substrates; (b)
efficiently cleaving C-C bonds at low temperatures; (c) efficiently
degrading polymers; (d) excellent accessibility to solid biomass fuel;
and (e) tolerance to most impurities contained in biomass. Liquid POM
catalyst has some advantages for application to DBFC. However, a
rational design for power density improvement is necessary in future
studies. The structural configuration of the cell has to be well designed
to reduce the internal resistance. The kinetics of the electrode reactions
has to be investigated in order to maximize power output.

6. Concluding remarks

Lignocellulosic biomass is a promising feedstock for fuel cells
because it is renewable, carbon neutral, and sustainable. Biomass can
be directly converted to electricity in some recently developed fuel cells;
however, it is usually first converted to simple fuels for higher
efficiency. MFC and some newly-developed DBFC can be operated at
low temperatures. In MFC, biomass is usually first converted to simple
carbon sources such as monosaccharides, phenolic compounds, and
organic acids, followed by microbial utilization for electricity genera-
tion. However, the biomass recalcitrance to sugar release and the
inhibitive effects of inhibitors generated during biomass hydrolysis are
two major obstacles for the biomass-fueled MFC. The power density of
MFC is usually lower than 0.5 mW cm-2, far less than that required for
commercial applications. However, they are very well suited for dilute
substrate streams such as wastewater. Thus a combination of ligno-
celluloses biorefinery and waste water treatment using MFC seems to
be a promising model for biomass conversion. DBFC refers to
technologies that can directly convert polymeric biomass to electricity.
This technology shows great promise because biomass can be directly
used as a fuel, but it is still in its early stage of development with low
efficiency. For improving efficiency of biomass-to-electricity conver-
sion, future research should be focused on biomass processing,
electrode development, cell design, parameter optimization, process
integration, and an understanding of fundamental process mechan-
isms.
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