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Abstract Quantification of the mechanical proper-

ties of cellulose nanomaterials is key to the develop-

ment of new cellulose nanomaterial based products.

Using contact resonance atomic force microscopy we

measured and mapped the transverse elastic modulus

of three types of cellulosic nanoparticles: tunicate

cellulose nanocrystals, wood cellulose nanocrystals,

and wood cellulose nanofibrils. These modulus values

were calculated with different contact mechanics

models exploring the effects of cellulose geometry

and thickness on the interpretation of the data. While

intra-particle variations in modulus are detected, we

did not observe a measureable difference in modulus

between the three types of cellulose particles.

Improved practices and experimental complications

for the characterization of cellulosic nanomaterials

with atomic force microscopy are discussed.

Keywords Atomic force microscopy � Cellulose
nanomaterials � Cellulose nanocrystals � Cellulose
nanofibrils � Contact resonance � Nanomechanics

Introduction

Cellulose nanomaterials (CNs) have a unique combi-

nation of characteristics, such as strong mechanical

properties, producibility at industrially relevant quan-

tities, economic feasibility, and low environmental

impact. CNs have shown utility in a wide array of

applications, suggesting the potential for commercial-

ization across an array of industrial sectors (Hansen

et al. 2014; Moon et al. 2011; Siqueira et al. 2010;

Samir et al. 2005; Eichhorn 2011; Mariano et al.

2014). Despite this potential there are many barriers

hindering commercialization. One of these barriers is

the lack of information on the basic properties of

different types of CNs (Hansen et al. 2014). The

properties, morphology, and dimensions of the CNs

are primarily determined by the source of cellulose,

type of refinement, and refinement conditions (Moon
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et al. 2011; Beck-Candanedo et al. 2005; Elazzouzi-

Hafraoui et al. 2008). CNs can generally be classified

based on the processing method used for their

production. These classes are the chemically pro-

cessed cellulose nanocrystals (CNCs, 3–20 nm wide,

50–500 nm in length) and the mechanically processed

cellulose nanofibrils (CNF, 5–100 nm wide, 500 nm

to microns in length).

To help guide the development of commercially

relevant CN based products, data on the fundamental

properties of CNs is needed. Specifically, this data can be

used to validate model predictions of individual CNs,

informmultiscalemodels of CNs, guide the optimization

of CN composite properties, and allow for better

understanding of manufacturing processes involving

CNs. A complication in measuring these properties is

that the orientation dependent stacking of cellulose

chains within CNs results in material property aniso-

tropy. Studies of the mechanical properties of CNs have

investigated the properties indirections relative to theCN

fibril longitudinal direction: parallel to it (i.e. axial

direction), or perpendicular to it (i.e. transverse direc-

tion).Thepurposeof this paper is tohelp address the issue

of lack of information on basic CN properties by

developing improvedprotocols for characterizationCNs.

The elastic properties of CNs have been studied

with atomic force microscopy (AFM) (Binnig et al.

1986), Raman spectroscopy, and atomistic simula-

tions. Based on AFM three point bend test measure-

ments (Deng et al. 2009), the axial elastic properties

for CN produced from bacteria (Guhados et al. 2005)

and tunicate (Iwamoto et al. 2009), were 78 and

145–150 GPa, respectively. Axial elastic properties

measurements by Raman spectroscopy reported val-

ues of 57–105 GPa for wood based CNCs (Rusli and

Eichhorn 2008), 114 GPa for bacterial cellulose

(Hsieh et al. 2008), and 143 GPa for tunicate CNCs

(Sturcova et al. 2005). Some of the range of reported

values is likely to be associated with differences in the

experimental techniques or the assumptions used in

the model predictions. For example, the difference

between reported values for tunicate based CNCs and

wood CNCs might be do to the effect of CN aspect

ratio on the Raman spectroscopy measurement tech-

nique (Rusli and Eichhorn 2008). However, there are

indications that cellulose source material and the

controlled refinement may influence the axial elastic

properties. For example, different dominant crystal

structure between bacterial cellulose (Cellulose Ia)

and tunicate cellulose (Cellulose Ib) could influence

material properties. The transverse modulus

(5–50 GPa) of CNs are less studied, and existing

AFMmeasurements tend to have large uncertainties in

the reported values (Wagner et al. 2011). To date the

transverse elastic modulus based on force displace-

ment AFM (FZ-AFM) measurements have been

reported for CNs derived from wood (Pakzad et al.

2011; Lahiji et al. 2010; Usov et al. 2015), cotton

(Pakzad et al. 2011), bacteria (Usov et al. 2015), and

tunicate (Wagner et al. 2010, 2011).

The large scatter and uncertainty in the reported

elastic constants of CNs makes it difficult to ascertain

if there is an effect of the cellulose source or

processing on the measured elastic moduli. There is

hope that through improved AFM methodologies

increased measurement sensitivity can be achieved,

making it possible to systematically investigate dif-

ferences in properties arising from changes of source

material and processing technique. Most prior AFM

studies of CNs have used a technique called force

displacement AFM (FZ-AFM) (Butt et al. 2005). In

FZ-AFM the displacement of the sample (Z) is

adjusted while the force (F) experienced by the AFM

cantilever is recorded. From this force and displace-

ment information, properties of the sample can be

inferred. FZ-AFM based techniques work well when

indentation of the sample by the AFM tip can be

accurately determined from the difference of the

sample displacement and cantilever deflection (Wag-

ner et al. 2011). For this to occur the indentation must

be significantly greater than the noise floor on both the

sample displacement and cantilever deflection chan-

nels. This limitation prevents FZ-AFM from accu-

rately characterizing samples that are much stiffer than

the AFM cantilever and samples that are very thin, as

the maximum achievable indentation in these exper-

iments is too small. The above considerations imply

that while FZ-AFM is well suited to the AFM three

point bend tests (where the sample can be deformed a

large amount) that determine CNs axial modulus, it is

poorly suited to measure CNs transverse modulus

(where the indentation into the sample is limited by

stiffness and thickness). Therefore, applying FZ-AFM

to study the transverse properties of CNs has funda-

mental sensitivity limitations that may prevent it from

resolving the small difference elastic properties aris-

ing due to differences in cellulose types, sources, and

processing.
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One approach to overcoming the large uncertainty in

FZ-AFMmeasurements of transversemoduli ofCN is to

consider methods that exploit the dynamics of the AFM

cantilever while interacting with the sample. Such

methodologies have the potential for increased mea-

surement sensitivity allowing for small changes in

material properties to be resolved. One dynamic AFM

method that is particularly well suited for the measure-

ment of stiff nanomaterials at small applied force is

contact resonance AFM (CR-AFM) (Rabe et al. 1996).

In CR-AFM the cantilever tip is placed in contact with

the sample at a constant force, and a resonant vibration

of the cantilever is excited. A resonant frequency, or

eigenvalue, of the surface-coupled cantilever is then

tracked as the cantilever is scanned over the sample.CR-

AFM exploits the sensitivity of the resonant frequency,

f, and quality factor, Q, to tip-sample contact stiffness

and damping (Rabe et al. 1996). Measurements of f and

Q can be related to spring and dashpot boundary

conditions in a dynamic Euler–Bernoulli beam model,

and a contact mechanics model can then be utilized to

determine the elastic and viscoelastic properties of the

sample. CR-AFM has been used to measure the

nanomechanical properties of a wide variety ofmaterial

systems (Rabe et al. 2002; Stan et al. 2009; Killgore

et al. 2011) and can be adapted to nanomechanical

mapping (Yamanaka et al. 2001; Kos et al. 2014;

Gannepalli et al. 2011; Kopycinska-Mller et al. 2012).

A schematic for a CR-AFM model and CR-AFM

experimental result is shown in Fig. 1.

This paper presents experimental results for the

transverse elastic modulus measured with CR-AFM

on three types of CNs: tunicate CNCs, wood CNCs,

and wood CNFs. Wood CNCs and wood CNFs are

industrially relevant materials as their production

volume can be scaled to industrially relevant quanti-

ties. Tunicate CNCs are more of an academic interest

as they have a more uniform morphology, lower

defects, and higher degree of crystallinity when

compared to other types of CNs (Moon et al. 2011).

The results of this study are separated into two parts.

The first part discusses the methodology development

necessary to apply CR-AFM on isolated tunicate

CNCs. The second part discusses CR-AFM measure-

ments performed on a sample that has multiple types

of CNs (tunicate CNCs, Wood CNCs, and wood

CNFs). This result focuses on both the differences

between different types of nanoparticles as well as

heterogeneities within individual particles. Through-

out this paper the authors have attempted to highlight

and apply improved experimental practices for char-

acterizing CNs with AFM as compared to the tradi-

tional FZ-AFM based approaches used in many of the

previous experimental studies.

Materials and methods

Contact resonance atomic force microscopy

In order to convert the observed cantilever resonance

frequency, f, while the cantilever tip is in permanent

contact with a sample surface into quantitative mate-

rial properties two models are needed. A model for the

dynamics of the AFM cantilever is needed to relate f to

stiffness of the tip-sample contact, ks. A second model

Fig. 1 a Contact resonance AFM experimental schematic. The

cantilever of stiffness, kc, and length, Lc, is in contact with the

sample of stiffness, ks. The deflection of the cantilever is w(x, t),

where x is position along the length of the cantilever and t is

time. b Schematic of typical contact resonance AFM

experimental result. When the cantilever is brought into contact

and held at a constant average normal force the resonance

frequencies (fi) of the cantilever increase. The amount that fi
increases can be used to determine ks, which in tern can be used

to determine sample modulus
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is needed for the tip-sample interaction force to relate

ks to the elastic modulus of the sample, Es. In CR-

AFM theses models are applied in the limit of small

cantilever vibration amplitude.

Euler–Bernoulli beam theory relates f to ks (Rabe

et al. 1996). Several different choices for boundary

conditions are possible for the Euler–Bernoulli beam

equations.We will apply the simple model as shown in

Fig. 1a. This model first relates a specific resonance

frequency, fi, to a wavenumber, aLi, as:

aLi ¼ aLi;free
fi

fi;free

� �1
2

, and then relates wavenumber to

contact stiffness as:

sinhðaLiÞcosðaLiÞ � sinðaLiÞcoshðaLiÞ

¼ ðaLiÞ3

3

kc

ks
ðcosðaLiÞcoshðaLiÞ þ 1Þ:

ð1Þ

where kc is the static bending stiffness of the AFM

cantilever. Equation 1 is only valid for certain ranges

of contact stiffness (Killgore and Hurley 2012), and

will typically work best when the dynamic stiffness of

the cantilever is comparable to the tip-sample contact

stiffness.

Modeling the contact mechanics between the AFM

tip and CN is complicated by both the geometry and

thickness of the CN. The geometry of the CN is

important because it has characteristic length scales that

are comparable to the those of the AFM tip. Substrate

effects are important because the indentation depth into

the CN obtainable with AFM is significant compared to

the CN thickness. There does not exist a simple

analytical model that can correctly account for both of

these effects. Therefore, to investigate these effects we

will consider three different contact mechanics models.

The Hertz contact mechanics model (Butt et al. 2005)

idealizes the tip-sample contact as that of a sphere

indenting a semi-infinite elastic half space. This is the

most common contact mechanics model used in AFM

analysis. The sphere–cylinder contact mechanicsmodel

(Stan et al. 2007; Wagner et al. 2011) accounts for

sample geometry by modeling the sample as a cylinder.

A thin film contact mechanics model (Dimitriadis et al.

2002) introduces a polynomial correction term that

accounts for the finite thickness of the sample. We will

add an ad-hoc adhesive force to each of these models by

following the approach of DMT contact mechanics

(Derjaguin et al. 1975) and shifting the entire force

versus distance curve down to account for adhesion.

For the cases of the Hertz and sphere–cylinder

models we can explicitly write contact stiffness k in

terms of the applied force F, material properties, and

geometric parameters. It is useful to write these

equations as k verses force F rather than the more

common form of F verses distance d as k and F are

directly obtained from the contact resonance AFM

experiment whereas d is not. The Hertz contact

equation is given as:

k ¼ 61=3ðEeqÞ2=3R1=3ðF � F0Þ1=3; ð2Þ

where F is the applied force, F0 is the adhesive force, R

is the radius of the AFM tip, and Eeq is the equivalent

modulus of the tip-sample contact. This version of the

Hertz model assumes the sample is a flat semi-infinite

half space. The sphere–cylinder contact equation is

given as:

k ¼ 3

2
S2=3ðEeqÞ2=3

1

R
þ 1

2Rc

� ��1=3

ðF � F0Þ1=3; ð3Þ

where Rc is the radius of the cylinder, and S is a

geometric parameter that must be numerically solved

as is discussed elsewhere (Wagner et al. 2011). The

sphere–cylinder model assumes that size of the stress

field is small relative to the dimensions of the cylinder.

For the case of the thin film model k cannot be written

explicitly in terms ofF. The thin filmmodel in terms of

F and d is given as:

F � F0 ¼
4

3
EeqR

1=2d3=2X

ffiffiffiffiffiffi
Rd

p

h

� �
ð4Þ

where h is the thickness of the sample and X
ffiffiffiffi
Rd

p

h

� �
is a

polynomial function. To proceed Eq. 4 and its

derivative k ¼ dF
dd

� �
must be solved simultaneously to

extract both d and Eeq. The exact form of X
ffiffiffiffi
Rd

p

h

� �
is

given elsewhere (Dimitriadis et al. 2002). The thin

film model in Eq. 4 assumes that the substrate is rigid.

The effect of allowing the substrate to have a finite

stiffness can be investigated with alternate thin film

models (Hay and Crawford 2011), although this effect

is small when compared to difference from the Hertz

model. The above models all assume isotropic sample

properties.

The equivalent modulus of the tip-sample contact

is related to the modulus of the tip and the modulus

of the sample in a fashion similar to series springs

as:
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1

Eeq

¼ 1� m2s
Es

þ 1� m2t
Et

ð5Þ

where Et is the modulus of the tip, Es is the modulus of

the sample, mt is the Poisson’s ratio of the tip, and ms is
the Poisson’s ratio of the sample.

Sample preparation

For AFM studies of transverse elasticity the CNs were

drop cast onto freshly cleaved, uncoated mica [M ¼ 53�
8 GPa (McNeil and Grimsditch 1993; Bobko et al.

2009; Delafargue and Ulm 2004)]. Excess solution

was removed with an absorbent material and the

sample was blown dry with a nitrogen gun. Three types

of CNs are considered in this work: tunicate CNCs,

woodCNCs, andwood CNFs. Tunicate andwood refer

to the cellulose source. CNCs and CNFs refer to the

processing technique: hydrolysis or mechanical pro-

cessing respectively (Moon et al. 2011). The exact

processing conditions the tunicate CNCs, wood CNCs,

woodCNFs is described elsewhere (van denBerg et al.

2007; Reiner and Rudie 2013a, b). The density of the

CNs on the surface can be controlled by the concen-

tration of the initial solution, the volume of liquid

deposited on the surface, and the amount of time the

sample is allowed to sit before drying. For the

topography images shown in Fig. 2 the details of the

sample preparation are 0.1 wt% for the initial CNC

solution concentration and 0.01 wt% for the initial

CNF concentration, approximately 20 lL drop vol-

ume, and approximately 20 s of wait time before

drying. Following the approach of Usov et al. (2015), a

CN sample containing wood CNC, tunicate CNC, and

wood CNF were simultaneously deposited to compare

elastic properties. The initial solutions were mixed at a

ratio of 1:1:0.1 before deposition. The type of CN can

be determined based on the AFM topography image.

Experimental procedure

AFM experiments were performed on a MFP3D Bio

AFM system (Asylum Research) in ambient air at a

temperature of about 20 �C and a relative humidity of

about 30 %. Cantilever resonances were excited by a

broadband, heavily damped piezoelectric transducer

mounted beneath the sample (Contact Resonance

Sample Actuator, Asylum Research). CONTR

cantilevers (Nanosensors, Germany) with a nominal

stiffness of 0.5 nN/nm and a nominal length of

450 lm were used. The actual stiffness of the

cantilever used in the CR-AFM experiment was

determined to be 0:32� 0:02 nN=nm with the cor-

rected thermal method (Hutter and Bechhoefer 1993;

Butt and Jaschke 1995; Proksch et al. 2004). The first

six resonance frequencies, fi;free, of the freely vibrating

cantilever were determined from the thermal spectra to

be 15.97, 97.76, 273.5, 536.8, 886.3, and 1324 kHz

respectively. The corresponding free wavenumbers

from Euler–Bernoulli beam theory are 1.875, 4.694,

7.855, 10.996, 14.1372, and 17.279. The force applied

to the samples F during the CR-AFM experiment was

5.0 ± 0.5 nN. This corresponds to a maximum inden-

tation of\1 nm.

To create maps of materials properties with CR-

AFM a methodology is needed for tracking resonance

frequency as the AFM tip is scanned across the sample.

Dual AC resonance tracking (DART) (Gannepalli et al.

2011) measures amplitudes A1 and A2 at frequencies

fi þ Df and fi � Df and tracks resonance frequency by
adjusting fi such that A1 � A2 ¼ 0. It is a common

practice to capture data twice in each fast scan line in

an AFM image. This results in two measurements of

resonance frequency at each point in the scan, the trace

frequency fi;t and retrace frequency fi;tr.

DART, or any other frequency tracking procedure,

will not perfectly track resonance frequencies across a

sample because of transients in the frequency tracking

feedback loop, contact geometry, and friction. These

effects are more prevalent on samples with significant

topography gradients, such as CN. Data where the

measured resonance frequency is deemed unreliable

has been eliminated from the final analysis of material

properties. This data elimination was undertaken with

respect to three parameters of the frequency tracking

procedure: the magnitudes of A1 and A2, the difference

between A1 and A2, and the difference between fi;t and

fi;tr. Specifically, we neglected data points with A1\1

or A2\1 mV, A1�A2

A1
[ 0:4, and jfi;r � fi;trj[ 8 kHz. A

final filtering step to separated the mica data from the

CN data is done based on the height of the topography

image.

Good sensitivity in CR-AFM is typically obtained

when the dynamic stiffness of the AFM cantilever is

comparable to the stiffness of the tip-sample contact.

However, the average force applied to the sample is
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determined by the static stiffness of the AFM

cantilever. We have used the higher eigenmode of a

softer AFM cantilever (Killgore et al. 2011), specif-

ically the 5th eigenmode, in order to minimize the

applied force and maximize material property sensi-

tivity. The 5th eigenmode was chosen because this

eigenmode exhibited the maximum absolute and

relative frequency shift between the CN and mica

substrate.

Results and discussion

The contact resonance frequency of the 5th CONTR

cantilever eigenmode tracked across an isolated

individual tunicate CNC is shown in Fig. 3b and the

corresponding topography image is shown in Fig. 3a.

Using the data filtering process discussed in the

‘‘Materials and methods’’ section the resonance

frequency observed on the tunicate CNC was

903.1 ± 4.5 kHz and the resonance frequency

observed on surrounding mica was 915.0 ± 2.8 kHz.

The error signals used to eliminate data from the final

analysis are shown in Fig. 3c–e. Figure 3f shows the

stiffness value on the CN and surrounding mica

calculated using Eq. 1. The white data points in Fig. 3f

are locations where the frequency data has been

eliminated from the final analysis based on the data

elimination criterion discussed in the ‘‘Materials and

methods’’ section.

Fig. 2 Contact mode AFM topography and electron micro-

scopy images of different types of cellulose nanomaterials.

a Isolated tunicate cellulose nanocrystal sample, b isolated

Wood cellulose nanocrystal sample, c isolated wood cellulose

nanofiber sample, d electron microscopy image of tunicate

cellulose nanocrystals, e electron microscopy image of wood

cellulose nanocrystals (Reiner and Rudie 2013a), f electron

microscopy image of wood cellulose nanofibers (Renier and

Rudie 2013b). The electron microcopy images are from the

same batches of CNs that are studied in this paper. The

procedure used for EM imaging is similar to what is describe in

Reising et al. (2012). g Mixed cellulose nanoparticle sample

created from particles shown in a–c. Based on a–c it is possible
to identify the types of cellulose nanomaterials in d

1036 Cellulose (2016) 23:1031–1041
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The stiffness values on the CN shown in Fig. 3f in

appear to follow a bimodal distribution. There are two

potential explanations for this distribution. It could be

an artifact of the AFM measurement arising from the

tip-sample geometric convolution, frictional or lateral

forces between the tip and sample, or imperfections in

the applied frequency tracking procedure. It is also

possible that the contrast represents differences in

modulus between different crystallographic orienta-

tions of the CN. The change in contrast along the

length of this CN could correspond to a twist in the

CN, thus changing the exposed crystallographic

orientation. Twisting of the CN and significant

differences in CN modulus in the different transverse

crystallographic orientations have been predicted by

molecular dynamics simulations of CN (Paavilainen

et al. 2011; Dri et al. 2013). Furthermore, ‘kinking’ of

CNs are observed when deposited onmica (Usov et al.

2015). The observed resonance frequency contrast

remained consistent with changing scan angle, scan

direction, and scan size. However, because of the

difficulty in accounting for measurement related

artifacts improvements in experimental technique are

needed to clearly interpret this contrast.

A sample containing tunicate CNCs, wood CNCs,

and wood CNFs was prepared to investigate the effect

of CN type on Es as measured with CR-AFM using the

5th cantilever eigenmode. The advantage of the above

experimental design is that the different CNs are

measured with the same AFM cantilever, at similar

times, and with the exact same experimental condi-

tions. This allows for increased confidence that any

observed differences between the particle types is

indeed a real effect, and not due to subtle changes in

experimental conditions. These results are shown in

Fig. 4. Two regions of the mixed sample were selected

each containing 2 tunicate CNCs, 2 wood CNCs, and 2

wood CNFs. Tunicate CNC number 1 is the same CN

that was shown in Fig. 3.

The measured resonance frequency both on the

CNs and mica varies as a function of time. Comparing

Fig. 4b–d reveals a difference in average resonance

frequency. In Fig. 4b the average resonance frequency

909.6 kHz (yellow on the colorbar) and in Fig. 4d the

average resonance frequency is 901.6 kHz (red on the

colorbar). A more general analysis of thirty two

contact resonance images on the sample shows that

there is a consistent decrease in resonance frequency

Fig. 3 AFM contact resonance data on isolated tunicate CNC.

a Topography image, b frequency map, c amplitude map,

d amplitude error map, e frequency retrace error map, f map of

tip-sample contact stiffness. Based on the amplitude map,

amplitude error map, and frequency retrace error map some data

has been excluded modulus map do to issues with the frequency

tracking mechanism. The locations of this excluded data is

shown in white on the contact stiffness map. The modulus value

of the CN is calculated as CN number one in Fig. 6

Cellulose (2016) 23:1031–1041 1037

123



as a function of time spent scanning. In addition to this

longer term drift of resonance frequency, there are also

jumps in the resonance frequency in the slow scan

direction within a single image.

It is likely that both the slow change over time of

resonance frequency and the jumps in resonance

frequency are due to contamination of the tip with

cellulose. Contamination of the AFM tip with cellu-

lose will result in one of three possible scenarios: (1)

the modulus of the tip does not significantly change

and the contamination will not effect the experimental

results even if the modulus of the tip is neglected in the

analysis, (2) the effective modulus of the tip becomes

comparable to the modulus of the CN and the

contamination will cause the modulus of the CN to

be underpredicted if the modulus of the tip is neglected

in the analysis, (3) the effective modulus of the tip

becomes small relative to the modulus of the CN and

the contamination will cause the experiment to be

insensitive to the modulus on the CN. We have

evaluated the effect of the contamination of the AFM

tip with cellulose using the measured resonance

frequency on mica and the modulus of mica in the

direction of applied force (53 GPa) (McNeil and

Grimsditch 1993; Bobko et al. 2009; Delafargue and

Ulm 2004). Because the modulus of mica is larger than

the modulus of the CN in the direction of the applied

force we can conclude that if our experiment is

sensitive to the modulus of mica then it is also

sensitive to the modulus of the CNs.

To determine if our measurement is sensitive to the

modulus of the sample we have computed the

equivalent modulus of the tip-sample contact on mica

as shown in Fig. 5a, b. These modulus values have

been calculated with a F � F0 of 10 nN, an AFM tip

radius of 10 nm, a Poisson’s ratio for both the tip and

sample of 0.3, and in a sample position near the

analyzed CN. These values and the known modulus of

mica was used to calculate the modulus of the AFM tip

for these twelve different cases as shown in Fig. 5c, d.

If the modulus of the AFM tip is close to the equivalent

modulus of the tip sample contact the measure is

insensitive to the modulus of the sample. We will use

the metric that the modulus of the AFM tip must be at

least 20 % greater than the equivalent modulus of the

tip sample contact to avoid this insensitive region. The

data in Fig. 4b meets this criteria, while the data in

Fig. 4d does not.

Figure 6 shows the modulus values on the CNs

from the data set in Fig. 4b calculated with the three

different types of contact mechanics models shown in

Eqs. 2, 3, and 4. A CN diameter of 8 nm was used for

the CNCs and 4 nm for the CNFs. No uncertainty in

model parameters was included in the calculation. The

Fig. 4 AFM contact

resonance data on mixed

cellulose nanoparticle

sample. a Topography

image of first region,

b frequency map of the 5th

eigenmode of the first

region, c topography image

of second region,

d frequency map of the 5th

eigenmode of the second

region. The numbered boxes

show areas of the sample

where data has been

extracted for analysis. The

arrows in b and d show the

location of jumps in

resonance frequency in the

slow scan direction. (Color

figure online)
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given uncertainty bounds only account for variation in

measured resonance frequency. It is reasonable to

neglect the uncertainties in model parameters when

comparing the different CNs we have measured

because these uncertainties are largely systematic in

nature and thus to not vary over the course of our

experiment.

With our technique we did not observe significant

difference in modulus between the three types of

cellulose nanoparticles analyzed. The crystal to crystal

variations within an single type of CN are comparable

to the variations between different types of CN.

Switching the contact mechanics model from the

Hertz based analysis to the thin film based analysis

lowers the predicted modulus numbers. The underly-

ing mica substrate causes the Hertz model to appear

stiffer than the thin film model on the CN. Switching

the contact mechanics model from the Hertz based

analysis to the sphere–cylinder based analysis raises

the predicted modulus. The smaller contact area

caused by the geometry of the tip-sample contact

causes the sphere–cylinder model to appear stiffer

then the Hertz model. Changing the contact mechanics

model away from Hertz has the bigger effect on the

smaller diameter CNFs compared to the larger diam-

eter CNCs. The critical model parameters of CN

thickness in the thin film model and CN radius in the

sphere–cylinder model violate the Hertz model

assumptions more drastically as each these parameters

Fig. 5 Calculated tip modulus values from data in Fig. 4. a,
b Equivalent modulus of the tip-sample contact measured on

mica. c, d AFM tip modulus calculated from the mica data and

known modulus of mica. Based on the metric that the equivalent

modulus must be 20 % different from the tip modulus to be

sensitive to the sample modulus, data sets 7–12 are insensitive to

the modulus of the sample due to excessive tip contamination

Fig. 6 Calculated CN modulus values for data sets one through

six from Fig. 4b. Three different models are used for data

analysis. The modulus of the CN is strongly dependent on the

model chosen to analyze the data
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become smaller. Changing the contact mechanics

model shifts the sample modulus between 40 and

240 %.

Conclusions

Using CR-AFM we measured and mapped the trans-

verse elastic modulus of three types of CNs: tunicate

CNCs, wood CNCs, and wood CNFs. The transverse

elastic moduli were found to be not significantly

different from each other and were dependent on the

type of contact mechanics model used to interpret the

experimental data. Improved practices for character-

izing the transverse elastic modulus of CN with AFM

have been utilized, specifically: (a) the use of higher

eigenmode CR-AFM which maximizes elastic mod-

ulus sensitivity while minimizing the maximum

applied force and maximum indentation, (b) the

elimination of data from the final analysis where it is

clear that problems with the CR-AFM frequency

tracking procedure are present, and (c) the analysis of

multiple types of contact mechanics models. The

different contact mechanics models employed

accounted for the finite thickness of the CN and the

geometry of the CN surface. CR-AFM represents an

improvement over FZ-AFM for the characterization of

CN because of the ability to limit the maximum

indentation into the CN while maintaining measure-

ment sensitivity to mechanical properties. To further

improve upon AFM measurements of CNs a more

comprehensive effort is needed to model and map the

interactions of the AFM tip with the CN. This effort

would need to account for the exact indentation

geometry of the CN, the interaction with the CN with

the underlying substrate, and any nonlinear elastic

behavior that arises from complex motion of the

individual cellulose chains. This work provides an

important step toward the routine, rigorous, and robust

characterization of the nanomechanical properties of

CNs. A critical aspect in the development of CN based

products.
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