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Abstract This paper presents an analysis of 3-dimensional

engineered structural panels (3DESP) made from wood-

fiber-based laminated paper composites. Since the existing

models for calculating the mechanical behavior of core

configurations within sandwich panels are very complex, a

new simplified orthogonal model (SOM) using an equiva-

lent element has been developed. This model considers

both linear and nonlinear geometrical effects when used to

analyze the mechanical properties of 3DESP by trans-

forming repeated elements from a tri-axial ribbed core for

bending. Two different conditions were studied in com-

parison with finite element method (FEM) and I-beam

equation. The results showed the SOM was consistent with

FEM and the experimental result and were more accurate

than the I-beam equation. The SOM considering nonlinear

geometric deformation needed more computational effort

and was found to match well with a FEM model and had

slightly better accuracy compared with the linear SOM.

Compared with FEM, the parameters in the linear SOM

were easier to modify for predicting point-by-point bend-

ing performance. However, while the FEM can provide

advanced characteristics of the 3DESP such as strain dis-

tribution, the linear SOM provided acceptable deformation

accuracy and is proposed for preliminary design with

multiple parameters. FEM should be applied for advanced

analyses.

1 Introduction

The development and application of sandwich panels can

be traced back to a boat made by the Egyptians at least

5000 years ago (Troitsky 1976; Sumec 1990), where

wooden planks were fastened to a wooden framework.

Today, sandwich panels are used for a variety of applica-

tions within the building, transportation, decking, packag-

ing, marine and aerospace industries using a variety of

materials (Vasiliev et al. 2001; Wei et al. 2013a, b, 2015;

Davalos et al. 2001; Sharaf and Fam 2011; Wei and

McDonald 2016). Sandwich panel efficiencies are achieved

by optimizing geometry and selective placement of mate-

rials for the faces and core to obtain optimum strength-to-

weight performance characteristics. Marine and aerospace

applications have the most demanding performance

requirements of strength to weight ratio and use the highest

strength materials. Many of these sandwich panels are

fabricated using honeycomb construction for the core

structure. The honeycomb cores are made from linear strips

that are selectively bonded along the length and then pulled

open to form a roughly shaped hexagon rib with angle of

approximately 0� and 60� from the linear-direction. Thus,

the effective hexagon rib alignments are generally 120�
apart and the ribs are segmented and not continuous. The

hexagonal rib alignment improves stiffness in nearly all

planer directions, but the effective stiffness in the primary

rib direction is slightly higher due to the double bonded

thickness of the original linear ribs.

A tri-axial linear rib core concept is being developed

that could be used to provide even more uniform or
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improved performance in all planer directions (Han and

Tsai 2003). In this paper, an alternative method was used to

evaluate the tri-axial linear rib core. The tri-axial rib core

was designed and fabricated using two sets of interlocking

linear ribs. The first set of ribs were double slotted 1/3 the

width from either side. The second set of ribs were single

slotted 2/3 the width of the rib from one side (Fig. 1) (Li

et al. 2013). Using the first set of ribs, double notched, as

the main rib orientation, then the second set, 2/3 width

notched ribs, were inserted from either the top or bottom

sides to create a triangular core design. This core config-

uration has been shown to be stiffer and stronger than foam

and honeycomb core (Evans et al. 2001; Zhang et al.

2008a). The size of the equilateral-triangle shown can be

modified by adjusting the distance between slots. The

geometry of the triangle can be modified to an isosce-

les triangle by adjusting the distances between slots for the

double-slotted rib. This core design provides an ability to

alter the rib spacing, orientation, and thickness, thus cre-

ating a core with optimum performance.

To better evaluate this core’s basic properties as part of a

panel system, this study was initiated to develop a SOM

having equivalent constitutive properties. The model can

then be used to estimate the mechanical performance of

sandwich structures based on laminated plate theory. In a

previous study, analytical models were grouped into two

categories: exact and equivalent (Chen andTsai 1996). Exact

models are more accurate and generate better specific results

than equivalent models, but they are more difficult and time

consuming to modify when used for preliminary design

analyses. The equivalent models are generally simple and

save time for broad design analyses. These equivalent

models can be directly incorporated into existing finite ele-

ment methods (FEM) techniques resulting in equivalent

models that provide good initial guidance for behavior with

slightly lower accuracy. Recently researchers analyzed the

equivalent equilateral triangle element to determine an

equivalent modulus for sandwich structures using a relative

density approach (Fang et al. 2009; Zhang et al. 2008b), but it

was only adapted for equilateral triangle core structures. The

authors are only aware of analytical models that evaluated

the mechanical performance of sandwich panels made from

metal or synthetic-fiber composites. There was no known

literature using wood-fiber-based composite materials with

the tri-axial rib core structure.

The Forest Products Laboratory (FPL) is working to

develop 3DESP made from wood-fiber-based composites

that have enhanced performance capabilities that could

meet the need for new and more demanding applications.

For some panels, high-strength, fire-resistance, and water

resistance are critical requirements. It may be possible that

a phenolic impregnated laminated paper might be sufficient

to fill some niche applications at reduced costs compared

with panels made of metal faces and synthetic paper hon-

eycomb cores (Li et al. 2013, 2014a, b, 2015, 2016a, b, c).

This paper develops a SOM from an equivalent structural

element for tri-axial ribbed core structures. Linear and

nonlinear geometrical deformation was estimated using the

SOM to predict the mechanical bending performance of

3DESP compared with FEM and simple I-beam equation

models. Laminated paper composite material was used to

fabricate the tri-axial ribbed core and also used for the top

and bottom faces. In a previous study (Li et al. 2013), FEM

and simple I-beamequationmodelswere used to estimate the

bending performance and failure modes for these 3DESPs.

Those models were compared with the experimental panels.

The FEM models were able to more accurately predict the

actual bending performance, but required extensive time to

create the geometric shapes. The simple I-beam equation not

only underestimated the deformation of the 3DESPs but also

was the furthest from the actual deformation at any given

load. However, it was significantly easier to estimate and

calculate using a spreadsheet. Similarly, the new SOM is a

little more complex than the I-beam geometry, but the core

Interlocking structure
Fabrication

Epoxy resin

Fig. 1 Tri-axial core fabrication from linear ribs that are either double slotted or single slotted
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geometry can be transformed using simple input variables of

the material properties and core rib dimensions. The tri-axial

core transformation was based on its repeated rib geometry.

The estimated bending performance characteristics for the

3DESPswere determined using this new SOMby both linear

and non-linear deformation considerations and were com-

pared with the experimental data, the FEM model, and the

simple I-beam equation.

2 Constitutive equations of materials

For some analyses, orthotropic elastic plate configurations

are used to analyze anisotropy within composite panels.

Figure 2 shows the orthogonal stresses and their

nomenclature for a single-layer plate. For these plate

applications, the primary loading conditions can be

described by in-plane stresses, r1, r2, and s12. In this

study, the out-of-plane stresses had little effect on the

bending performance and thus were ignored due to sim-

plification (Daniel and Ishai 1994). According to Hooke’s

law, the stress and strain relationship can be used to

describe the mechanical properties for an orthotropic sin-

gle-layer plate for the composite panels.

3 Simplified orthogonal model (SOM)

Based on laminated plate theory, the new model for the tri-

axial ribbed core structures was used to design and simu-

late the mechanical performance of 3DESPs. The model

could be used for panels with or without faces for small

deflection bending tests. The ribs’ size and angle can be

modified for easier design and analysis requirements. The

tri-axial ribbed repeated pattern is shown in Fig. 3a. The

combined pattern consists of five ribs, one parallel to the

X-axis and others are set at some angle from the X-axis.

Equivalent rib section dimensions were transformed

between the X-axis and Y-axis based on angle h under the

same equivalent lengths, m and n, and core height, b as

shown in Fig. 3b. Equivalent rib widths for the different

orientations are given by:

Fig. 2 Mechanical parameters for the orthotropic single-layer plate

Fig. 3 Process for developing an equivalent core element for analyzing a laminated panel structure
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a0 ¼ að1þ coshÞ ð1Þ

a00 ¼ asinh ð2Þ

where a is the actual rib width, a0 is the equivalent rib

width having its cross-section perpendicular to the X-axis

and a00 is the equivalent rib width having its cross-section

perpendicular to the Y-axis. The equivalent parameters for

the orthotropic ribs (Fig. 3b), can then be transformed to an

equivalent solid element (Fig. 3c). An equivalent moment

of inertia, I0X in the Y–Z plane, about the Y-axis was

determined substituting the equivalent rib thickness, a0.
Similarly, the equivalent moment of inertia about the X-

axis, I0Y , was determined using a00. The equivalent moments

of inertia were then used to determine the equivalent

bending stiffness equation given by:

EXIX ¼ E0
XI

0
X ð3Þ

where EX and IX , E0
X and I0X are the equivalent elastic

modulus along the X-axis and using the equivalent moment

of inertia for orthotropic ribbed element about the Y-axis

and for the equivalent solid. The equivalent elastic

modulus E0
X can then be determined by:

E0
X ¼ EXIX

I0X
¼ EXa

0

n
¼ E1að1þ coshÞ

n
ð4Þ

where n is thewidth for the equivalent solid that has its cross-

sectional element perpendicular to the X-axis, and EX along

the X-axis for orthotropic ribbed element is equal to the

elastic modulus E1 of the laminated paper rib in Table 1.

Similarly, the equivalent elastic modulus along the Y-

axis of the equivalent solid (Fig. 3c), is determined by the

ribs aligned along the Y-axis of an orthotropic ribbed

element in Fig. 3b, the equivalent bending stiffness equa-

tion is then given by:

E0
Y ¼ EYIY

I0Y
¼ 2EYa

00

m
¼ 2E1asinh

m
ð5Þ

where EY and IY , E
0
Y and I0Y are the elastic modulus along

the Y-axis and the moment of inertia about the X-axis for

the orthotropic ribbed element and for an equivalent solid

element. The equivalent solid element width dimension is

m. In this model, EY along the Y-axis for orthotropic ribbed

element is also equal to the elastic modulus E1 of the

laminated paper rib in Table 1.

According to E0
X and E0

Y , the other related parameters are

given by (Troitsky 1976; Whitney 1987; Chen and Wang

2007):

l0XY ¼ l12 ð6Þ

l0YX ¼ E0
Y

E0
X

l0XY ð7Þ

G0
XY ¼ E0

XE
0
Y

E0
X þ E0

Y þ l0YXE
0
X þ l0XYE

0
Y

ð8Þ

where l12, l
0
XY and l0YX are the Poisson’s ratio for the exact

rib material and equivalent Poisson’s ratio for the equiva-

lent solid plate element, respectively. G0
XY is the equivalent

shear modulus of equivalent solid plate element, and then

G0
XY is equal to G0

YX .

From the analysis above, the equivalent related param-

eters E0
X , E0

Y , l0XY , l0YX and G0
XY are determined using

laminated plate theory to design or simulate the 3DESP.

4 Laminated plate theory for 3DESP

Assuming linear-elastic material properties, the displace-

ments about the neutral plane are given by:

d0 ¼
u0

v0

w0

8
<

:

9
=

;
ð9Þ

where u0, v0 and w0 are the neutral displacements of the

solid plate along the X-, Y-, and Z-axis, respectively. For

this preliminary and simplified equivalent model czx ¼
czy ¼ 0 and normal strain ez ¼ 0 can be assumed for the

calculation (Vinson 1999). Then the equation of geometric

relationship under elastic mechanics is given by:

e ¼ e0 þ zj ð10Þ

where e0; j and z. are the strains and curvatures at the

neutral plane, and the distance from the origin along the Z-

axis, respectively. The displacement matrix equation at the

neutral plane of the plates, Eq. 11, is given by:

e0X
e0Y
c0XY
j0X
j0Y
j0XY

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;

¼

ou0

oX
ov0

oY
ov0

oX
þ ou0

oY

� o2w0

oX2

� o2w0

oY2

�2
o2w0

oXoY

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>;

: ð11Þ
Table 1 Material properties of 3DESP

Material Nominal

thickness

(mm)

E1

(GPa)

E2

(GPa)

G12

(GPa)

Poisson

ratios

l12

Poisson

ratio

l21

Laminated

paper

2.36 11.6 8.3 3.3 0.36 0.22
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Laminated plate theory (Daniel and Ishai 1994) was

used to describe the equivalent continuous tri-axial plate

with or without faces as shown, Eq. 12:

N

M

� �

¼ A B

B D

� �
e
j

� �

: ð12Þ

The matrixes of [A], [B] and [D] are determined by

Eq. 13:

ðAij;Bij;DijÞ ¼
Z

h
2

�h
2

Qijð1; z; z2Þdz: ð13Þ

For 3DESP, the geometry and materials were both

symmetrically relative to the mid-plane. Therefore, the

coupling stiffness [Bij] = 0. By substituting matrix Eq. 13

into Eq. 12, the matrix for the structural core is given by

Eq. 14:

The matrix for the faces is given by Eq. 15:

Stiffness ½Ac�, ½Dc� and ½As�, Ds½ � are the tension–com-

pression rigidity and bending-twisting stiffness of the core

or faces, respectively. Based on the accumulated principle,

the total tension–compression rigidity [A] and bending-

twisting stiffness [D] of both core and faces are given by:

A½ � ¼ ½Ac� þ ½As� ð16Þ
D½ � ¼ ½Dc� þ ½Ds� ð17Þ

Then Eq. 12 can be written as given by Eq. 18:

NX

NY

NXY

MX

MY

MXY

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;

¼

A11 A12 0

A21 A22 0

0 0 A66

0

0

D11 D12 0

D21 D22 0

0 0 D66

0

B
B
B
B
B
@

1

C
C
C
C
C
A

eX
eY
eXY
jX
jY
jXY

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;

ð18Þ

Ac 0

0 Dc

� �

¼

E0
Xb

1� l0XYl
0
YX

l0YXE
0
Yb

1� l0XYl
0
YX

0

l0XYE
0
Xb

1� l0XYl
0
YX

E0
Yb

1� l0XYl
0
YX

0

0 0 G0
XYb

0

0

E0
Xb

3

12ð1� l0XYl
0
YXÞ

l0YXE
0
Yb

3

12ð1� l0XYl
0
YXÞ

0

l0XYE
0
Xb

3

12ð1� l0XYl
0
YXÞ

l0YXE
0
Yb

3

12ð1� l0XYl
0
YXÞ

0

0 0
G0

XYb
3

12

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

core

ð14Þ

X2

k¼1

As 0

0 Ds

� �

¼

2E1t

1� l12l21

2l21E2t

1� l12l21
0

2l12E1t

1� l12l21

2E1t

1� l12l21
0

0 0 2G12t

0

0

E1t
2t2

3
þ bt þ b2

2

� �

1� l12l21

l21E2t
2t2

3
þ bt þ b2

2

� �

1� l12l21
0

l12E1t
2t2

3
þ bt þ b2

2

� �

1� l12l21

E2t
2t2

3
þ bt þ b2

2

� �

1� l12l21
0

0 0 G12t
2t2

3
þ bt þ b2

2

� �

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

skin

ð15Þ
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For Eq. 18, the inverse matrix equation is obtained for

calculating the strains and displacements.

According to different boundary conditions, using the

inverse matrix of Eq. 18 in conjunction with Eq. 11, the

estimated mechanical properties can be determined based

on either displacement or stress of the tri-axial core with or

without faces.

5 Material properties and test configurations
for experimental panels

5.1 Materials properties

The material properties for individual components are

provided in Table 1. Phenolic impregnated laminated paper

NP610, Norplex-Micarta Inc. (Postville, IA, USA), was

used for the faces and the core. The laminated paper had

orthogonal properties designated as machine direction

(MD) or X-axis and cross-machine direction (CD) or

Y-axis. US Composites (West Palm Beach, FL, USA)

epoxy, 635, with a ratio of epoxy to hardener at 3:1 was

used to bond the faces to the core. Laminated paper in-

plane tensile and shear properties and Poisson’s ratios txy
and txz were obtained from tensile tests according to

ASTM D638 (2010) (Table 1).

5.2 Experimental panels

Two 3DESPs were fabricated and tested using a four-point

bending test set-up. The MD of the laminated paper was

aligned with the longitudinal direction. The panels were

tested according to ASTM D393 (2000). The panel

dimensions and test set-up information are listed in

Table 2.

6 Modeling

6.1 Linear simplified orthogonal model

The new SOM considered linear geometrical change was

used to analyze bending for the 3DESP. For bending of

symmetric laminates, the constitutive relations reduce to

the form shown in Eq. 19:

jX
jY
jXY

8
><

>:

9
>=

>;
¼ �

D22

D11D22�D21D12

� D12

D11D22�D21D12

0

D21

D11D22�D21D12

D11

D11D22�D21D12

0

0 0
1

D66

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

�
MX

MY

MXY

8
><

>:

9
>=

>;
ð19Þ

In-plane bending was assumed, thus:

MY ¼ MXY ¼ 0 ð20Þ

Using matrix Eq. 11 and Eq. 19 in conjunction with

Eq. 20, the curvature along the X-axis is given by:

jX ¼ � o2w

oX2
¼ D�

11MX ð21Þ

where:

D�
11 ¼

D22

D11D22�D21D12

ð22Þ

The shear deformation in the core was ignored when

estimating the maximum beam deflection, because the ratio

of span to thickness for the panels was larger than 20 so

shear in the core should have had little effect on the

deflection of the beam. According to the principle of

superposition on maximum deflection (Sun 2002), the

simply supported panel beam under four point bending test

can be calculated using Eq. 23:

xmax ¼
D�

11P

96W
ð3R1L

2 þ 3R2L
2 � 4R3

1 � 4R3
2Þ ð23Þ

where, W is the panel width. The other parameters are

listed in Table 2 and shown in Fig. 4.

6.2 Nonlinear simplified orthogonal model

There are two significant sources of nonlinear bending

behavior. One is caused by the nonlinear material proper-

ties. Wood or wood-fiber-based materials are viscoelastic

materials with high variations. In this paper, a linear-elastic

Table 2 Beam and bending test set-up dimensions for 3DESP

Panel ID Span of beam

L (mm)

Load distance from

support R1 (mm)

Load distance from

support R2 (mm)

Beam thickness

t (mm)

Beam width

W (mm)

1 1057.2 345.1 358.2 38.1 276.8

2 914.4 304.8 304.8 38.1 266.7
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material assumption was used in the simplified model for

preliminary analyses. Another source for nonlinear

behavior is geometrical. This characteristic is important for

large deformational systems. Since the higher order

derivative for deflection was neglected in the linear model,

a SOM that considered nonlinear geometrical behavior was

presented to determine its impact on the panel’s deforma-

tion predictions. Nonlinear bending has been widely dis-

cussed by many researchers. Nonlinear moment–curvature

relationship is one of the significant methods used for

bending that does not involve stretching (Nishawala 2011;

Wang 1968, 1969). A method was presented by Conway

(1947) for large beam deflection with a concentrated load.

In that paper and this one, it was assumed that the support

using roller configuration has a small horizontal displace-

ment without stretching, then the numerical model based

on moment–curvature relationship was applied to calculate

the large deflection of sandwich beams (Wang 1968). The

equation is given by:

d/
ds

¼ D�
11MX ð24Þ

where d/=ds is the derivative of slope of the beam.

According to the geometry, cosu ¼ dx=ds, multiplying

dx in both sides and integrating the formula of Eq. 24

between any two limits, e and f, then the equation can be

written by:

sinui � sinuj ¼
Z i

j

D�
11MXdx ð25Þ

where x is the horizontal distance from support to the

moment section. The beam can be divided into several

equal intervals to calculate the bending slope. A trial-and-

error method was performed to obtain the solution u for the

simply supported beam under a concentrated load (Wang

1968). At first, an initial value for u at the support point

was assumed, and then the other slope can be calculated by

Eq. 25. Substituting the computed values to the following

Eq. 26 until the solution x approaches 0 using Simpson’s

rule (Fertis 2006), then the equation is given by:

x ¼
Zc

0

tanudx ¼ 0 ð26Þ

where, x is the deflection and c is the horizontal length of

beam after deformation.

Then the maximum deflection at mid-span point can be

calculated by the slopes as follows:

y ¼
Z

c
2

0

tanudx ð27Þ

where y is the deflection on the transverse direction.

Based on the principle of superposition, the simply

supported panel beam under four point bending test can be

calculated by Eq. 28:

xmax ¼
X2

p¼1

Z
cp
2

0

tanupdx ð28Þ

Fig. 4 Four-point bending test set-up for 3DESP
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Fig. 5 Comparison between linear and nonlinear geometrical models
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where p is concentrated load number.

The comparison between the linear and nonlinear models

using non-dimensional parameters is shown in Fig. 5. It

shows that the linear and nonlinear models have no notice-

able differences with the small deformation phase. As the

load increases, the slope of the nonlinear model decreases

while the linear model holds a constant value. The nonlinear

model was more accurate, especially, for large deflection for

structures made from non-linear material.

6.3 FEM model

ANSYS FEM software was used to model the 3DESPs

(Fig. 6). Material properties and dimensions for the models

were the same as those used for the experimental panels

and the equivalent model listed in Table 2. The 3D eight-

node shell element, Shell 99, was used to analyze the

structure. Approximately 20,000 elements were used to

mesh the models. The reaction points were held in-place

and the load was applied at the same location as the

experimental 3DESPs. The mid-point deflection versus

load was determined according to the experiments.

6.4 Simple I-beam model

Conventional I-beam model was used to estimate the

deflection of the 3DESP in 4-point bending (Sun 2002).

The modulus of elasticity E, for the panel, was the E1 from

Table 1. The moment of inertia, I, was simplified and

calculated for only the two faces and three axial ribs. The

off-axis ribs were not considered in the calculation for I.

The analyses of bending failure load were discussed in a

previous paper (Li et al. 2013). In this study, several dif-

ferent linear models and a non-linear model for the

3DESPs in four-point bending were comparatively ana-

lyzed by the relationship between load and deflection.

7 Results and discussion

Figure 7 shows the relationship between load and deflec-

tion for the linear equivalent, nonlinear equivalent, FEM,

and simple I-beam models compared with the experimental

panel 1 test data. They show that the load–deflection esti-

mates for all the models were consistent with the experi-

mental data until the panel started to deform in the non-

linear phase at around 4.5 kN. At this load, the linear SOM,

nonlinear SOM and FEM models were within 5.5, 2.4, and

3.0% error of the experimental panel results, respectively.

The simple I-beam model had a 17% error at 4.5 kN. The

simple I-beam model did not include the off-axis ribs thus

resulting in a lower estimate than the experimental data.

Comparing the nonlinear SOM with the FEM model had

slightly higher accuracy than the linear SOM. The maxi-

mum failure load was 7.0 kN and the panel began to yield

around 63% of the maximum load. While the FEM model

provided stress distributions throughout the panel and can

be used to simulate the performance as an exact model (Li

et al. 2013), however, the FEM model set-up required more

Fig. 6 Finite element model for bending analysis by ANSYS

Fig. 7 Relationship between load and deflection of panel 1

Eur. J. Wood Prod.

123



detail inputs that are much more time consuming than the

linear SOM and simple I-beam models. The nonlinear

SOM deformation would have better accuracy for large

deformation analyses, but for small loads and deformation

the differences between models would not have noticeable

differences in deformation. The nonlinear SOM would

provide better predictions for flexible thin structures. The

linear SOM deformation provided a simplified approach

and flexibility to modify some parameters for initial design

with accuracy within 2.5% of the FEM model predicted

deformation at the same load. The simple I-beam theory

can roughly evaluate the mechanical performance of a

panel, but it loses some accuracy of approximately 11.0%

from the experimental values at failure load.

Figure 8 plots experimental panel 2 load and deflection

as well as for the linear and nonlinear SOM, FEM, and

simple beam models. Panel 2 dimensions were slightly

different to those for panel 1, see Table 2. The maximum

failure load was 9.9 kN and the panel began to yield around

60% of the maximum load. It also shows that the load–

deflection estimates for both the linear and nonlinear SOM

and FEM models had similar results as shown for panel 1

until the panel started to deform into the non-linear phase

around 6.0 kN. The linear and nonlinear SOM and FEM

models were within -0.8, 0.5, and 1% error compared with

the experimental panel results at the yield load, while the

simple beam model was 15.2% lower than the experimental

results. Because of the nonlinear geometrical considera-

tion, the nonlinear SOM and FEM models had slightly

higher accuracy than the linear SOM at failure load, but

need more computational effort. The difference between

the models and experimental result was the nonlinear

deformation caused by the nonlinear materials effect.

Failure criterion analysis for these panels was explained

in the previous paper (Li et al. 2013). Maximum stress

obtained from material properties was used to evaluate the

bending failure load of panels for each model. The pre-

dicted failure loads for the FEM were performed in both

SOMs, linear and nonlinear, and I-beam model for the

comparison. For panel 1, the predicted failure loads for the

SOM models, FEM model and I-beam model were 8.0 kN.

For panel 2, the predicted failure loads for the SOMs, FEM

model and I-beam model were 10.7 kN. Compared with

the experimental results, both the SOMs and FEM models

were more accurate than the I-beam model. It is believed

the improvement in prediction was due to the orthogonal

core material’s inclusions of the influence of shear and the

cross ribs into the core properties that was not easily

considered in an I-beam model. Both SOM, linear and

nonlinear models can be calculated using EXCEL sheet,

and nonlinear SOM had better accuracy, however, it was

more complex with many calculating effort.

8 Preliminary design of tri-axial core

The exact representation of the tri-axial core for the

sandwich panel is complex for preliminary design needs.

The repeatable elements in the core have variable factors

such as rib length, rib thickness, and angle that can be

transformed into equivalent orthogonal elements repre-

sented as a solid layer for laminated plate theory. Ana-

lyzing the orthogonal element for the tri-axial core using

variable factors such as rib length dimension and angle

between the ribs are shown in Figs. 9, 10, and 11.

Figure 9 shows the relationship between the variable

angle and orthogonal properties of elastic modulus on

X-axis and Y-axis, and shear modulus for the tri-axial

ribbed structural core, respectively. The base length of the

tri-axial grid and rib section was fixed. The only variable

was the angle between two ribs. In Fig. 9, the elastic

Fig. 8 Relationship between load and deflection of panel 2

Fig. 9 Equivalent moduli for a solid element vs. rib angle for a fixed

base-length of an isosceles triangular rib configuration

Eur. J. Wood Prod.

123



modulus along the X-axis decreased with an increase in

angle from 10� to 80�. The elastic modulus along the

Y-axis slowly increased in this range. The two moduli in

the X and Y directions were similar when the rib angle was

60�, as expected. The tri-axial core becomes the iso-grid

structural core at 60�. The in-plane shear modulus increases

from a minimum of 78 MPa to a maximum of 182 MPa at

a rib angle of 50�.
Figure 10 shows the relationship between a fixed trian-

gular perimeter and orthogonal properties of elastic mod-

ulus along the X-axis and Y-axis, and in-plane shear

modulus of tri-axial ribbed core, respectively. The trian-

gular perimeter was set at 352 mm similar to the experi-

mental panels, and the perimeter can be modified for

analyses by the same method. In Fig. 10, the perimeter was

set but the angle was variable, the elastic modulus along

the X-axis decreased having a quadratic trend similar to the

elastic modulus along the X-axis for the constant fixed base

length of Fig. 9. In contrast, the elastic modulus along the

Y-axis slowly increased and intersects with the elastic

modulus along the X-axis at 60�, then continues to increase

above 60�, the elastic modulus along the Y-axis increases

significantly as it approaches theoretical 90� or solid

material in the Y-direction. The shear modulus has a slight

variance between 53 MPa to 156 MPa as the angle

increases from 10� to 80�. Maximum shear modulus is at

40�.
Figure 11 shows the orthogonal properties for elastic

modulus and in-plane shear modulus of the core for an

equilateral triangular as side length varies. According to

the iso-grid structure, the elastic modulus is the same along

the X-axis and the Y-axis. Figure 11, shows that the elastic

modulus and shear modulus decreased as length increases.

These curves show the potential and relative changes that

occur for the estimated elastic moduli and shear modulus

for different tri-axial core configurations. These analyses

could be applied to initial design phases when developing a

structural core with or without faces.

9 Conclusion

In this paper, a SOM using laminated plate theory was

developed for 3DESP cores. Comparisons were carried out

to validate the analytical results. The orthogonal moduli

and shear modulus developed for the engineerable tri-axial

core can be easily modified based on variable core

parameters. Examples of variable options and the resulting

material properties were shown using the SOM that could

then be applied for further design of 3DESP.

The comparative results showed the SOM of an

orthogonal core for 3DESP considering linear deformation

exhibits acceptable accuracy and capability to evaluate the

initial deformation of 3DESP with minimal input time and

effort. The nonlinear deformation model had slightly better

accuracy, but required more computational effort. FEM

models provide more advanced characterization such as

buckling and localized stress distribution information, it

requires significantly more time to input multiple param-

eters to solve complex structural interactions. The simple

I-beam equation only considers linear ribs in one direction

and does not consider any cross-rib influences for the core

and was less accurate in predicting actual performance. In

this sense, the preliminary design of a SOM considering

linear deformation for 3DESP is the best first approach

followed by using the FEM method to validate specific

design performance. In addition, a non-orthogonal struc-

tural core with variable factors can be easily changed and

analyzed by the SOM. The results show the potential and

relative changes of elastic moduli and shear modulus for

different tri-axial core configurations, which can be applied

Fig. 10 Equivalent moduli for a solid element vs. rib angle for a

fixed perimeter of an isosceles triangular rib configuration

Fig. 11 Equivalent moduli for a solid element vs. leg length of an

equilateral triangular rib configuration
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during an initial design of 3DESP for specific

requirements.

The deformation of the new SOM is based on laminate

plate theory that can also be satisfied for the wood-fiber-

based sandwich structures made from different materials

and configurations. The parameters of the material prop-

erties and thicknesses for each layer can be modified based

on specific application, and then used to predict perfor-

mance or conduct initial analyses for various parameters

during the design process. In the future, an advanced model

based on core shear deformation of 3DESP will be studied.
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