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1 Introduction 

Efficient and complete degradation of woody plant cell walls requires the concerted 
action of hydrolytic and oxidative systems possessed by a relatively small group of 
filamentous basidiomycetous fungi. Among these wood decay species, 
Phanerochaete chrysosporium was the first to be sequenced (Martinez et al. 2004). 
In the intervening 10 years, over 100 related saprophytes have been sequenced. 
There genomes have revealed impressive sequence diversity. and recent functional 
analyses are providing a deeper understanding of their roles in the deconstruction of 
plant cell walls and the transformation of xenobiotics. 

Wood cell walls are primarily composed of cellulose, hemicellulose and lignin. 
Many microbes are capable of hydrolyzing the linkages in cellulose and hemicel­
lulose, even though crystalline regions within cellulose can be rather challenging 
substrates (reviewed in Baldrian and Lopez-Mondejar 2014; van den Brink and de 
Vries 2011). In contrast, few microbes possess the oxidative enzymes required to 
efficiently degrade the recalcitrant lignin, a complex, amorphous, and insoluble 
phenylpropanoid polymer (Higuchi 1990; Ralph et al. 2004). These unusual wood 
decay fungi secrete extracellular peroxidases with impressive oxidative potential. 
Potential applications have focused primarily on lignocellulosic bioconversions to 
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high-value. low molecular weight products and on organopollutant transformations 
Voluminous literature covers the physiology and genetics of wood decay (for 
reviews see Cullen 2013: Cullen and Kersten 2004; Eriksson et al. 1990; Hatakka 
and Hammel 2010: Kersten and Cullen 2013; Kirk and Farrell 1987). This chapter 
does not provide a comprehensive treatment of the field. but rather highlights recent 
genome progress relevant to bioprocess development. 

2 Diversity and Microbiology of Wood Decay Fungi 

Two distinct forms of wood decay were generally recognized. White rot fungi 
degrade cellulose. hemicellulose. and lignin, although the patterns vary depending 
on the wood species and fungal strain (Blanchette 1991; Daniel 1994: Eriksson 
et al. 1990; Schwarze 2007). White rot fungi such as P. chrysosporium, simultane­
ously degrade all cell wall polymers, while Ceriporiopsis subvermispora selectively 
degrades lignin ahead of cellulose and hemicellulose (Akhtar et al. 1992; Behrendt 
and Blanchette 1997: Srebotnik and Messner 1994). A few white rot fungi, includ­
ing Phlebiopsis gigantea, are able to rapidly colonize freshly cut conifers by metab­
olizing and tolerating resins. triglycerides and fatty acids. In contrast to white rot, 
brown rot fungi modify, but do not remove. lignin. Instead, a polymeric residue is 
left (Niemenmaa et al. 2007; Yelle et al. 2008, 2011) and the cellulose is rapidly 
depolymerized. Seemingly consistent with decay patterns, initial genome analyses 
revealed multiple genes encoding extracellular peroxidases in white rot fungi, but none 
in brown rot. In addition to wood decay fungi, certain litter decomposers also 
degrade lignin (reviewed in Eriksson et al. 1990: Hatakka 2001). and these sapro­
phytes may play an essential role in the transformation and degradation of humic 
substances (Kluczek-Turpeinen et al. 2005; Snajdr et al. 2010; Steffen et al. 2002). 
The white rot fungus Trametes sp. degrades humic substances in  a process likely 
involving Fenton-based mechanisms (Grinhut et al .  2011 a, b). 

Importantly, brown rot depolymerization of cellulose (Gilbertson 1981; Kirk 
et al. 1991; Kleman-Leyer et al. 1992; Worrall et al. 1997) proceeds rapidly in 
advance of extensive colonization and substrate weight loss. This observation and 
the limited porosity of cell walls strongly argue for the involvement of diffusible, 
small molecular weight oxidants (Blanchette et al. 1997; Cowling 1961; Flournoy 
et al. 1993; Srebotnik et al. 1988; Srebotnik and Messner 1991). Highly reactive 
hydroxyl radical. generated via the Fenton reaction (H2O2+Fe2+ + H+ H2O+Fe3+ 

+ ·OH) has been implicated in this process (Akhtar et al. 1992; Cohen et al. 2002 
2004; Xu and Goodell 2001). The precise mechanisms supporting sustainable 
hydroxyl radical production remain unclear although plausible redox systems have 
been proposed (reviewed in Arantes et al. 2012; Goodell 2003). and considerable 
evidence supports hydroquinone redox cycling (Arantes et al. 2011; Paszczynski 
et al. 1999; Suzuki et al. 2006) (Fig. la). 
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Fig. 1 Simple diagram ofcellulose attack by wood decay fungi with hydroxyl radical (a), oxida­
tive enzymes (b) and glycoside hydrolases (c) 

Enzymes and Oxidative Processes Involved 
in Lignocellulose Conversions 

3.1 Lignin Degradation 

Owing to their high oxidation potential, the Class II peroxidases lignin peroxidase 
(LiP), versatile peroxidase (VP) and manganese peroxidases (MnP) modify lignin 
and related aromatic molecules. LiP and VP have redox potentials of approxi­
mately 1.5 V, and are able to directly oxidize non-phenolic lignin model com­
pounds by a single electron (Kersten et al. 1985; Kirk et al. 1986; Miki et al. 1986). 
LiP and VP feature a surface tryptophan mediating long-range electron transfer 
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(LRET) of larger sterically-hindered non-phenolic substrates (Choinowski et al. 
1999; Doyle et al. 1998). Depending on the structure of substrate, complex patterns 
of intermediates are formed (Miki et al. 1986; Tien and Kirk 1983). Peroxidases 
and ligninolysis have been reviewed (Hammel and Cullen 2008; Higuchi 1990; 
Martinez et al. 2014). 

In contrast to LiPs and VPs, MnPs lack a conserved surface Trp and cannot 
directly oxidize non-phenolic aromatics. However. in the presence of H2O2 and a 
suitable Mn3+ chelator, conserved Mn-binding sites in the vicinity of a heme propio­
nate allow MnP to catalyze the oxidation of Mn2+ to Mn3+ (Sundaramoorthy et al. 
1994; Wariishi et al. 1992). These Mn-binding sites and the abovementioned sur­
face Trp are conserved in VPs which thereby have hybrid characteristics of LiPs and 
MnPs (Ruiz-Dueñas et al. 2009). Diffusible Mn3+ chelates will oxidize phenolics 
directly or generate other oxidizing species, and oxalate is a likely physiological 
Mn3+ chelator for the MnP and VP reactions (Kuan and Tien 1993). Superoxide and 
perhydroxyl radicals might, in the presence of lipids, initiate radical chain reactions 
producing ligninolytic radicals (Kapich et al. 1999). 

All lignin degrading fungi were thought to possess some combination of genes 
encoding class II peroxidases, but recent analysis of Botrybasidium botryosum and 
Jaapia argillacea has shown that these wood decay fungi slowly degrade lignin in 
the absence of high oxidation potential peroxidases (Riley et al. 2014) (Fig. 2). 
Similarly, no class II peroxidases were detected in the genome of Schizophyllum 
commune (Ohm et al. 2010), a white rot fungus exhibiting weak to non-existent 
lignin degradation (Boyle et al. 1992; Schmidt and Liese 1980). These observations 
undermine the strict dichotomous classification of white rot and brown rot wood 
decay, although it should be noted that efficient lignin degrading fungi typically 
have multiple class II peroxidase genes while brown rot fungi and phylogenetically 
related ectomycorrhizae have none (Floudas et al. 2012; Martin et al. 2008; Martinez 
et al. 2009). Among the highly ligninolytic white rot fungi, the number of penes 
encoding class II peroxidases varies sharply. For example, LiP, MnP, and VP gene 
numbers are 10, 5 ,  and 0, respectively in P. chrysosporium, but 0, 9, and 3 in 
Dichomitus squalens (summarized in Cullen 2013). The role of this genetic multi­
plicity is uncertain, but differential regulation in response to substrate composition 
was observed prior to the ‘genomics era’ (Holzbaur and Tien 1988; Stewart and 
Cullen 1999) and, of particular relevance here, transcripts corresponding to specific 
P. chrysosporium LiP and MnP penes were identified in colonized soil containing 
polycyclic aromatic hydrocarbons (PAHs) (Bogan et al. 1996a, b). Pleurotus ostrea­
tus lacks LiP-encoding genes, but transcript levels of MnP and VP are influenced by 
media composition (Knop et al. 2014) and the VP4 dominates under Mn deficient 
conditions. 

The degradation of PAHs and other organopollutants has been attributed to the 
striking oxidation potential and low substrate specificity of the class II peroxidases 
(reviewed in Cullen 2002; Hadar and Cullen 2013; Hammel 1995a, b; Higson 1991; 
Pointing 2001). PAHs such as benzopyrene, pyrene and anthracene have ionization 
potentials below 7.6 eV and serve as substrates for LiP (Hammel 1995a; Hammel et al. 
1986). LiPs will also transform chlorinated phenols (Hammel and Tardone 1988; 



Prospects for Bioprocess Development Based on Recent Genome Advances... 165 

Fig. 2 The numbers of lignocellulose-degrading enzymes predicted in 25 wood decay fungal 
genomes. Heatmap color scale shown on upper left. Cluster dendrogram was performed by R 
using gene numbers and clearly separates seven brown-rot fungi and sixteen white-rot fungi. 
Unsusual white rot fungi, Jaapia argillacea (Jaaar) and Botrybasidium botryosum (Botbo), which 
lack POD genes, cannot be easily assigned to white- or brown-rot categories (Riley et al. 2014). 
Seven species of brown-rot fungi include Dacryopinax spp. (Dacsp), Wolfiporia cocos (Wolco), 
Serpula lacrimans (Serla), Postia placenta (Pospl), Gloeophyllum trabeum (Glotr), Fomitopsis 
pinicola (Fompi) and Coniophora puteana (Conpu). The 16 species of white-rot fungi are: Bjead, 
Bjerkandera adusta; Phach, Phanerochaete chrysosporium; Phaca, Phanerochaete carnosa; 
Phlbr, Phlebia brevispora ; Dicsq, Dichomitus squalens ; Trave, Trametes versicolor ; Cersu, 
Ceriporiopsis subvermispora; Phlgi, Phlebiopsis gigantea; Hetan, Hererobasidion annosum; 
Gansp, Ganoderma spp.: Fomme, Fomitiporia mediterranea; Punst, Punctularia strigosozonata; 
Galma, Galerina marginata; Aurde, Auricularia delicate; Pleos, Pleurotus ostreatus; Stehi, 
Stereum hirsutum. This aggregated data set was derived from (Floudas et al. 2012: Hori et al. 
2013,2014c; Riley et al.2014). 

(Mileski et al. 1988; Reddy and Gold 2000: Valli and Gold 1991), tetrahydrofurans 
(Vazquez-Duhalt et al. 1994), dioxins (Hammel et al. 1986; Valli et al. 1992b), 
methoxybenzenes (Kersten et al. 1985), and chloro- and nitro-methoxybenzenes 
(Teunissen et al. 1998; Valli et al. 1992a, b; Valli and Gold 1991). MnP can decolorize a70 
dyes (Heinfline et al. 1998) and oxidize pentachlorophenol and 2, 4, 6-trinitrotoluene 
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(TNT) (Reddy and Gold 2000; Scheibner and Hofrichter 1998; Van Aken et al. 
1999). VPs will also transform azo dyes (Salame et al. 2010, 2012b) as well as 
carbamazepine (Golan-Rozen et al. 2011). 

The PAHs phenanthrene and flourene are not MnP or LiP substrates (Bogan et al. 
1996a, b, c; George and Neufield 1989; Hammel et al. 1992; Vazquez-Duhalt et al. 
1994), but peroxidation of unsaturated lipids can generate transient lipoxyradical 
intermediates that oxidize non-phenolic lignin model compounds, flourene (Bogan 
et al. 1996a, b, c) and phenanthrene (Moen and Hammel 1994). The efficient pro­
duction of class I I  peroxidases in E. coli (Doyle and Smith 1996: Nie et al. 1998) 
has substantially advanced understanding of the catalytic properties of individual 
isozymes (Martinez et al. 2014), and directed evolution using a S. cerevisiae expres­
sion system has been used to alter temperature-, peroxide-, and pH-tolerance of P. 
eryngii VP (Garcia-Ruiz et al. 2012). 

Although not class II peroxidases, recent studies also suggest that heme thiolate 
peroxidases (HTPs) and the dye decolorization peroxidases (DyPs) (Hofrichter 
et al. 2010; Lundell et al. 2010) may serve as useful biocatalysts for organopollutant 
degradation. HTPs include chloroperoxidases and peroxygenases and these catalyze 
various reactions (Gutierrez et al. 2011; Ullrich and Hofrichter 2005). The number 
of genes predicted to encode these enzymes varies substantially among fungi, and 
they are particularly abundant in the genomes of the saprotrophs Agaricus bisporus 
and Coprinopsis cinereus. In the case of the button mushroom A. bisporus, 16 of the 
24 putative HTP genes were upregulated in compost (Morin et al. 2012). Potential 
applications for fungal peroxidases were recently reviewed (Martinez et al. 2014). 

Laccases have also been implicated in lignin degradation through the oxidation 
of phenolic units in lignin, but the major non-phenolic substructures can only be 
cleaved in the presence of auxiliary substrates such as ABTS (2,2'-azino-bis-3­
ethylthiazoline-6-sulfonate) (Bourbonnais et al. 1997, 1998; Collins et al. 1999) 
(reviewed in Giardina et al. 2010). Similarly, organophosphorous insecticides a re 
degraded by P. ostreutus laccase (Amitai et al. 1998), and high ionization potential 
PAHs are oxidized by Coriolopsis gallica and T. versicolor laccases (Johannes et al. 
1996; Pickard et al. 1999) in the presence of synthetic mediators. Laccase activity 
and stability were improved using S. cerevisiae-based directed evolution (Mate 
et al. 2010). The genomes of most white-rot fungi feature multiple laccase genes but 
some, notably P. chrysosporium and Phlebiopsis gigantea, contain none (Fig. 2). 

Considerable research has examined PCP degradation by ligninolytic fungi and 
their purified enzymes. Peroxidases and laccases can initiate oxidation via para­
quinone formation and release of chlorine. Remediation studies have demonstrated 
detoxification by humification into organic matter, and LiP, MnP and laccase polym­
erization of labeled PCP led to soil-bound products (Ruttimann-Johnson and Lamar 
1996). Field remediation of PCP-contaminated soils has been demonstrated (Ford 
et al. 2007a, b; Lamar and Dietrich 1990; Lamar et al. 1990a, b, 1994; Lestan and 
Lamar 1996). 

Numerous investigations have focused on the degradation ofazo dyes, the largest 
class of synthetic dyes (Singh and Arora 2011), and wood decay fungi have shown 
considerable promise (Kaushik and Malik 2009; Stolz 2001: Wesenberg et al. 2003). 
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Both class II peroxidases and laccases will oxidize certain azo dyes and site specific 
mutagenesis verified the importance of Trp 164 in Pleurotus eryngii VP (Camarero 
et al. 2005; Ruiz-Duenas et al. 2008). Random mutagenesis has improved degrada­
tive performance of a P. ostreatus laccase (Miele et al. 2010). 

3.2 Peroxide Generation 

Several enzymes have been proposed as the source of extracellular H2O2, a 
key requirement for class II peroxidases and for Fenton chemistry. Considerable 
evidence supports glyoxal oxidase (GLOX), a radical-copper oxidase (Whittaker 
et al. 1996) first reported in P. chrysosporium cultures (Kersten and Kirk 1987). 
Considerable evidence supports a close physiological connection between GLOX 
and LiP (Kersten 1990) and the enzyme is found in most, but not all, white rot fungi 
(Cullen 2013). Brown rot fungi do not feature GLOX-encoding genes although, as 
in the case of the white rot fungi C. subvermispora, H. annosum and F. mediterra­
nea, structurally related copper radical oxidases (Vanden Wymelenberg et al. 2006) 
may compensate (Cullen 2013). 

Other potential sources of extracellular H2O2 include glucose-methanol-choline 
oxidases (GMCs) such as aryl alcohol oxidase (AAO), methanol oxidase and vari­
ous sugar oxidases (reviewed in Hernandez-Ortega et al. 2012). Methanol oxidase, 
in particular, is highly expressed by white rot and by the brown rot fungus, 
Gloeophyllum trabeum. In this case, the enzyme is proposed to generate the H2O2 

required as a Fenton reactant (Daniel et al. 2007) (H2O2+Fe2++H+ H2O+Fe3++ 
·OH). The biological role of cellobiose dehydrogenase (CDH) remains uncertain 
(Henriksson et al. 2000; Zamocky et al. 2006), but this multi-domain enzyme 
(Hallberg et al. 2000) warrants mention because of its ability to enhance cellulose 
oxidation by lytic polysaccharide monooxygenases (LPMOs) (Harris et al. 2010; 
Langston et al. 2011). LPMOs were originally classified as ‘hydrolases’ but subse­
quently shown to be copper-dependent monooxygenases (Quinlan et al. 2011; 
Westereng et al. 2011) (Fig. 1b). 

3.3 Other Oxidative Enzymes 

Beyond secreted peroxidases and laccases, wood decay fungi possess a plethora of 
intracellular systems for transforming an impressive array of organopollutants. The 
genomes generally contain approximately 150 or more cytochrome P450 encoding 
genes (Cullen 2013). but their precise role(s) are uncertain. Nevertheless, advances 
have been made (Doddapaneni et al. 2013; Syed and Yadav 201 2). 

iophene (Ichinose et al. 1999), endosulfan (Kullman and Matsumura 1996) and 
various PAHs (Bezalel et al. 1996a, b; Masapahy et al. 1999; Syed et al. 2010, 

White rot P450s have been implicated in the degradation of 4-methyldibenzoth-
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2011). In some instances, the combined activities of ligninolytic peroxidases and 
P450s has been demonstrated (Bezalel et al. 1997). Similarly. the transformation of 
carbamazepine (CBZ), a widely occurring pharmaceutical pollutant. involves 
Pleurotus ostreatus MnP and P450(s) (Cruz-Morato et al. 2012; Golan-Rozen et al. 
2011; Marco-Urrea et al. 2009). In P. chrysosporium cultures, 2,4,6-trichlorophenol 
(Reddy et al. 1998) and PCP (Hammel and Tardone 1988: Mileski et al. 1988: 
Reddy and Gold 1999, 2000) are degraded by peroxidase-driven dechlorination and 
then intracellular reductive dechlorination and hydroxylation. The catalytic activity 
of a P. chrysosporium P450 has been improved via mutagenesis (Syed et al. 201 3). 
Activity of membrane bound P450s against PAHs has been assessed in Pichia by 
coexpression of a reductase partner (Syed et al. 2010). 

In addition to the intensively studied degradative activities of wood decay fungi, 
certain enzymes hold considerable promise as biosynthetic catalysts. For example, 
tandemly arranged genes encoding pyranose 2 oxidase and pyranosome dehydra­
tase have been observed in several genomes including P. gigantea (Hori et al. 2014b) 
and P. chrysosporium (Martinez et al. 2004). Their precise function remains uncer­
tain, but they can produce the antibiotic cortalcerone (de Koker et al. 2004; Giffhorn 
2000). These enzymatic reactions have been coupled to bifunctional catalysts con­
taining Bronsted and Lewis acid sites to produce furylglycolic acid, a compound 
suitable for copolymerization with lactic acid (Schwartz et al. 2013). 

4 Hydrolytic Systems Involved in Cell Wall Degradation 

Fungal hydrolases and related carbohydrate active enzymes (CAZys) represent a 
major portion of the commercial enzyme market. Based on well established fermen­
tation technologies, the ascomycetes Trichoderma and Aspergillus produce copious 
quantities of cellulases including exocellobiohydrolase I (CBHI), exocellobiohy­
drolase II (CBHII), ß-1,4-endoglucanase (EG) and ß-glucosidase (ß-Glu) (Baldrian 
and Valaskova 2008; Kirk and Cullen 1998). The genetic characterization of the T. 
reesei cellulases was established long before the initial genome analysis (Martinez 
et al. 2008) and the hydrolases were known to be encoded by relatively few genes 
within glycoside hydrolase families GH6 (CBHII), GH7 (CBHI, EG), CH12 (EG), 
GHS (EG) and ß-Glu (GHI, GH3) (Fig. 1c). This stands in sharp contrast to the 
genetic diversity encountered in wood decay fungi such as P. chrysosporium where 
six CBH1 isozymes are produced. Possibly, this structural diversity reflects func­
tional differences (Munoz et al. 2001). It is now clear that such genetic multiplicity 
is the norm in white rot fungi (Floudas et al. 2012; Hori et al. 2014b), and this 
extends to hydrolases, esterases and lyases involved in hemicellulose degradation 
(Kirk and Cullen 1998; van den Brink and de Vries 2011). 

Likely owing to their reliance on oxidative depolymerization of cellulose, brown 
rot fungi have few, if any, exocellobiohydrolases and endoglucanses. Serpula lacry­
mans appears exceptional in that three GH5s with cellulose binding domains 
(putative EGs) have been identified in the genome (Eastwood et al. 2011). Several 
GHS EG-like genes have been identified in other brown rot species but, in the 
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absence of binding domains and any exocellobiohydrolases (CBH1 or CBH2). it is 
unclear how such enzymes could efficiently hydrolyze crystalline cellulose. 

The repertoire of genes and their regulation vary substantially among wood 
decay species and the substrate colonized. For example, P. chrysosporium transcript 
and secretome patterns differ markedly when cultured in media containing complex 
woody substrates, especially those genes encoding a GH92 a-1,2-mannosidase, 
a-GH27 a-galactosidase, a GH5 1,4 ß-mannan endohydrolase, and two carbohy­
drate esterases (CE15) (Vanden Wymelenberg et al. 2011). Although closely related 
to P. chrysosporium, the complement of Phanerochaete carnosa genes (Suzuki 
et al. 2012) and their regulation (Macdonald and Master 2012; MacDonald et al. 
2012) differ substantially. These patterns are, at least in part, related to a P. carno­
sa’s preference for softwood; a characteristic even more pronounced by P. gigantea. 
Development of conversion processes may also be aided by elucidating transcript 
patterns on conventional forestry feedstocks (Vanden Wymelenberg et al. 2011) as 
well as gene expression responses to specific synngyl-rich transgenic derivatives of 
hybrid poplar (Gaskell et al. 2014). These recent studies demonstrate that lignin 
composition substantially altered gene expression suggesting that commercial 
enzyme mixtures could be improved by tailoring enzyme components to specific 
feedstocks. Such studies facilitate development of enzymatic systems for biomass 
conversions and may help guide Populus breeding programs. 

In addition to polysaccharide degradation certain wood-inhabiting fungi effi­
cientlyremove resinous extractives from freshly harvested and/or wounded pine. 
Often problematic in paper manufacturing as pitch deposits, these extractives 
include resin acids, long chain fatty acids and triglycerides. Among white rot fungi, 
Phlebiopsis gigantea is particularly well adapted to colonizing conifer wood and 
recent genome analyses (Hori et al. 2014b) have identified highly expressed lipases 
and active ß-oxidation pathways likely involved in the metabolism of the triglycer­
ides (Fig. 3). Such lipolytic systems, particularly the lipases, may be useful for 
commercial bioprocesses. 

Emerging Experimental Tools and Future Prospects 

5.1 Genetic Transformation Systems 

Strain improvement and fundamental research on lignocellulose degrading fungi 
have been hampered by the availability of tenable genetic transformation systems. 
Auxotroph complementation and drug resistance have been used for the model 
white rot fungus P. chrysosporium. but the efficiency is quite low and multiple, 
ectopic integration even 
lines include gene silencing via RNA interference (Matityahu et al. 2008) and the 

itsaretypicallyobtained.Encouragingadvancesalongthese 

uptake of DNA by shock waves (Magana-Ortiz et at. 2013). The latter approach has 
been employed to generate P. chrysosporium transformants producing increased 
levels of LiP, MnP and a VP (Coconi-Linares et al. 2014). In P. ostreatus, enhanced 
ligninolytic activity was obtained by over expression of the gene encoding VP 

5 



Fig. 3 Adapted From Hori et al. (Hori et al. 2014c). pathways illustrating lipid oxidation and 
related metabolism when P. gigantea is cultivated on medium containing loblolly pine (LP) rela­
tive to glucose (Glu) as sole carbon source. Enzymes encoded by upregulated genes are high­
lighted in  black and associated with thickened arrows. Abbreviations: ADH/AO Acyl-CoA 
dehydrogenase/oxidase, AH aconitate hydratase, CoA ligase long fatty acid-CoA ligase, DLAT 
dihydrolipoyllysine-residue acetyltransferase, DLST dihydrolipoyllysine-residue succinyltransfer­
ase, EH enoyl-CoA hydratase; FH fumarate hydratase. KT ketothiolase (acetyl-CoA 
C-acyltransferase). HAD 3-Hydroxyacyl-CoA dehydrogenase. ICL isocitrate lyase, IDH isocitrate 
dehydrogenase, MDH malate dehydrogenase, MS malate synthase, ODH oxoglutarate dehydroge­
nase, OXA oxaloacetase, PC pyruvate carboxylase, PDH pyruvate dehydrogenase. PEP phospho­
enolpyruvate, PEPCK phosphoenolpyruvate carboxykinase, PEPK phosphoenolpyruvate kinase, 
SDH succinate dehydrogenase 
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mnp4 (Salame et al. 2012a), and peroxidase regulation is influenced by calmodulin 
is shown by treatment with CaM inhibitors. RNAi suppression and overexpresion 
(Suetomi et al. 2014). 

The inability to target genes has been a longstanding experimental limitation 
among filamentous basidiomycetes. However, impaired nonhomologous end join­
ing has been demonstrated in Ku knockout strains of non ligninolytic strains of S. 
commune (de Jong et al. 2010) and C. cinereus (Nakazawa et al. 2011) and, more 
recently, in the efficient lignin degrader, P. ostreatus (Salame et al. 2012b). The lat­
ter 
Formants which have been useful for defining the catalytic roles of VP and MnP 
genes (Knop et al. 2014; Salame et al. 2013, 2014). 

strain allows 100% homologous recombination among the stable trans-

Such powerful experimental tools offer unprecedented opportunities to establish 
the function of a wide range of genes and thereby directly contribute to our under­
standing of lignocellulose conversions. Importantly, this analysis could help resolve 
the challenging problem of ‘hypothetical genes’, a common feature of fungal 
genomes. For perspective, of 11,891 predicted P. gigantea genes, 4744 encode 
‘hypothetical’ or ‘uncharacterized’ proteins. RNA-seq and secretome analyses have 
shown that many of these genes are regulated and/or encode secreted proteins when 
cultivated on woody substrates (Hori et al. 2014b). Clearly, these proteins have sig­
nificant roles, and targeted disruptions/replacements could provide meaningful 
functional insight along these lines. The regulation or expression levels of promis­
ing genes could be altered to improve, for example, bioremediation performance. 
Additionally, the ‘hypothetical’ protein of interest might be amenable to production 
in heterologous systems, in which case detailed biochemical investigations and bio­
process evaluation would be possible. 

5.2 Metagenomes and Metatranscriptomes 

The availability of an increasing number of fungal genomes and concomitant expan­
sion of databases (Cantarel et al. 2009; Levasseur et al. 2013) facilitate metage­
nome, and metatranscriptome investigations of complex microbial communities 
(Baldrian and Lopez-Mondejar 2014). For examples, Fungal transcripts associated 
with PAH degradation were identified in a soil microcosm amended with the phen­
anthrene (de Menezes et al. 2012). and eukaryote transcripts in  spruce and beech 
forest soil included diverse fungal CAZys along with metazoan homologs (Damon 
et al. 2012). Focusing on cellulose degradation in coniferous forests. Baldrian and 
co-workers showed that fungal decomposition dominated in litter while bacteria 
were mainly represented in the soil (Baldrian et al. 2012; Stursova et al. 2012). Of 
relevance to biomass utilization, a diverse array of exocellobiohydrolase (CBHl) 
genes had been identified (Baldrian et al. 2012). 

Recent database expansions, enhanced mass spectrometry performance and 
improved bioinformatic methods have made possible high throughput identification 
of extracellular proteins in  pure cultures of P. chrysosporium (Hori et al. 2011; 
Manavalan et al. 2011; Ravalason et al. 2008; Sato et al. 2007; Vanden Wymelenberg 
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et al. 2005, 2009, 2010) and other white rot fungi (Floudas et al. 2012: Hori et al. 
2014a, b; Martinez et al. 2009). Metaproteomic analysis of more complex samples 
will increasingly be used for defining the structure and functional activities within 
microbial communities (Hettich et al. 2012: Mueller and Pan 2013). For example, 
Schneider and co-workers (Schneider et al. 2012), have determined that, relative to 
bacteria, fungi were the main enzyme producers in forest litter samples, and they 
observed shifts in  the relative abundance of ascomycetes to basidiomycetes over 
time. In these studies, mass spectrometry-identified peptide patterns were associ­
ated with activities of hemicellulases and cellulases. Collectively, these studies 
reveal a rich diversity of microbes and physiological activities in complex 
substrates. 
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