
Chapter 7

Use of VFM for Heterogeneity Evaluation of Materials
Under Uniaxial Tensile Stress

John Considine, F. Pierron, and K.T. Turner

Abstract Identification of spatially varying stiffness is a challenging, but important, research topic especially as materials

become more complex and are used in extreme environments. Examination of heterogeneity is often accomplished by

unique test fixtures capable of creating the necessary stress configurations for heterogeneous stiffness identification. In this

work the Virtual Fields Method (VFM) was used to identify stiffnesses in a simple geometry, namely uniaxial tension, of a

simulated material with an inclusion whose stiffness gradually increases from that of surrounding material. Three different

VFM analyses were examined and their results compared. Results suggest that cooperative use of these analyses could

provide reasonable stiffness identification for heterogeneous materials using uniaxial tensile tests.
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7.1 Introduction

Identification of material stiffness is the most frequent use of the Virtual Fields Method (VFM) [1]. A common assumption

within VFM is material homogeneity. Often this assumption is quite reasonable, when stiffness spatial variation is small

compared to the mean stiffness. Efforts to accurately identify stiffness heterogeneity generally require non-standard test

fixtures to activate sufficient full-field strains for numerical analysis. This work examines the common uniaxial tensile test

and provides an overview of the use of VFM for heterogeneous stiffness identification.

The objective of this work is to summarize VFM procedures used in heterogeneous stiffness identification, along with the

some of their advantages and limitations. VFM procedures can be used cooperatively to provide information on the location

and size of heterogeneities. Additionally, we hope to encourage those new to, or just beginning with, VFM to understand its

potential usefulness.

Characterization of material heterogeneity is important in process control in order to evaluate and maintain material

quality, and in end use environments, to determine stiffness changes due to temperature, moisture, damage, or other external

factors. In both occurrences initial assessment of heterogeneity may be physical, e.g., the material looks damaged in a

particular location, or another tool, such as ultrasonic evaluation, may be used.

Although challenging in practice, spatially varying stiffness identification can provide an additional tool to examine the

extent of material heterogeneity in terms of location(s), frequency, and stiffness gradient. The challenge for the evaluator is

coordinated selection of test geometry, stiffness parameterization and appropriate inverse analysis.

The uniaxial tensile test is one of the most used test configurations for mechanical characterization. The test is quick,

intuitive, and a part of many quality control processes. With the addition of full-field displacement measurements, such as

digital image correlation or the grid optical technique, the uniaxial test and VFM can provide an evaluation of stiffness

heterogeneity.
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Here a strip of simulated material, 25 mm � 150 mm, containing a single inclusion with smoothly varying stiffness,

under uniaxial tension, was examined with three VFM techniques. Effectiveness of each identification technique was

determined by comparison with known stiffness. Given that the uniaxial tensile geometry is not an optimal choice for

heterogeneous material evaluation, reasonable identification was achieved.

7.2 Uniaxial Model

A thin rectangular specimen of size L1 � L2 ¼ 150 mm � 25 mm and thickness 1 mm was modeled in ANSYS® (ANSYS,

Inc, Canonsburg, PA 15317, USA) using 3750 1 mm2 PLANE42 elements. Origin of the coordinate system was located on

the lower left of the specimen as shown in Fig. 7.1. Stiffness was smoothly varying in both the x1- and x2-directions and was
rotated 60º with respect to x1-direction. Attributes of the inclusion were selected to simulate actual scenarios and to challenge

stiffness identification techniques. Formula for Q11 (GPa) is given in Eq. (7.1) and is based upon a 2-D probability curve.

Poisson’s Ratio was set to 0.3 throughout the model. Although any smoothly varying stiffness distribution could have been

selected, those made up of cos(ωxi) and sin(ωxi) terms were intentionally excluded because one of the identification

techniques is based upon Fourier transforms.

Q11 ¼ 11:0þ 3:3e� x1�75ð Þ∗ cos ðπ=3Þþðx2�12:5Þ∗ sin ðπ=6Þð Þ=150∗12ð Þ2� x1�75ð Þ∗ cos ðπ=3Þþðx2�12:5Þ∗ sin ðπ=6Þð Þ=25∗12ð Þ2 ð7:1Þ

Figure 7.2 gives the finite element (FE) strains and those from a grid–measurement simulation. Grid simulation is

described in [2]. Zero-mean, random gray scale noise was added to the simulated deformed grid image at 1 % of gray scale.
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Fig. 7.1 Q11 for uniaxial tension model
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Fig. 7.2 FE strains (a)–(b) and simulated grid strains (d)–(f); scale is (%) strain. (a) FE ε1. (b) FE ε2. (c) FE ε6. (d) Grid ε1. (e) Grid ε2. (f) Grid ε6
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7.3 Application of VFM to Heterogeneous Materials

Three VFM analyses are presented for the purpose of heterogeneity characterization. The Principle of Virtual Work (PVW)

provides the basis for use of VFM to examine heterogeneous materials. For a plane stress problem, PVW can be written as

ð

S

σ1ε
∗
1 þ σ2ε

∗
2 þ σ6ε

∗
6
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ð

L f

T iu
∗
i dl, ð7:2Þ

where S is the area of 2-D domain, σi are stresses within S,u
∗
i are kinematically admissible virtual displacements,ε∗i are virtual

strains associated with u∗i , Ti are tractions applied on boundary of S, and Lf is the portion of S over which Ti are applied.

Assuming a linear elastic isotropic material, the constitutive equation is given by
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Using Eq. (7.3) in Eq. (7.2) gives an experimentally useful PVW equation as

ð

S

Q11 ε1ε
∗
1 þ ε2ε

∗
2 þ 1

2
ε6ε

∗
6

� �
dSþ

ð

S

Q12 ε1ε
∗
2 þ ε2ε

∗
1 � 1

2
ε6ε

∗
6

� �
dS ¼

ð

L f

T iu
∗
i dl ð7:4Þ

Equation (7.4) is useful because in many test systems the full-field strains, εi, and the external loads,Ti, are measured. The

contribution of VFM is the advantageous selection of the virtual fields, u∗i , and by strain–displacement relations the virtual

strains, ε∗i , so that the stiffnesses, Qij, are determined to ensure equilibrium of S.

7.3.1 Optimized, Piecewise Virtual Fields

VFM has many advantages over other inverse methods, and many of those advantages are evolved from optimized,

piecewise virtual fields that are used to specify the ui
∗. Two of the three VFM techniques described here use them. Virtual

meshes are not dense for homogeneous materials; density is specified based on the number of stiffnesses to be identified and

expected stiffness gradient. Generally, mesh density is specified such that the number of interior virtual nodes are 2� the

number of stiffness values needed, but a dense mesh is used here to reduce the effects of smoothing performed by the virtual

fields. The virtual mesh is shown in Fig. 7.3 where each virtual element is 5 mm � 5 mm. A detailed derivation of

optimized, piecewise virtual fields is given in Sects. 3.6 and 3.7 of Pierron and Grédiac [1].

7.3.2 Location of Inclusion Known a Priori

Assume that the region S in Eq. (7.4) contains an inclusion whose location and boundaries are known. If S ¼ S1 \ S2, where
S2 is the inclusion region and S1 is all of S outside S2, then Eq. (7.4) can be rewritten as

Fig. 7.3 Piecewise virtual field mesh
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Accordingly, if k inclusions exist within S, then the left-hand side of Eq. (7.5) would contain k + 1 integral terms, where

the + 1 refers to the region not contained in the inclusions, i.e., the matrix material. For simplicity, the following

development will assume only a single inclusion, but the development for multiple inclusions is straightforward.

If S1 and S2 are assumed to be comprised of different linear elastic isotropic materials, then Qij are constants and can be

placed outside the integrals in Eq. (7.5). The new equilibrium equation is
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Although no limit on the number of Sk exists,Q
Sk
ij identification requires sufficient strain data, εi, for each region. Practical

experience has shown unstable identification for k > 5 [3]. Furthermore, inclusion boundaries are rarely “sharp”; an

inclusion boundary layer usually exists in which stiffness gradually changes from the matrix to the inclusion. Some

judgment by the analyst is needed to define the boundary contour. Conservative use of Eq. (7.6) for multiple inclusions

requires that each inclusion be allowed to have unique Qij initially.

7.3.3 Equilibrium Gap

A further development in the virtual fields method [4] comes from the understanding that PVW can also be used to examine

local equilibrium. A similar procedure has been used to examine errors in FE modeling [5]. Discrepancies in local

equilibrium are “equilibrium gaps” (EGs) and can be used to locate boundaries of regions that are not in equilibrium with

each other when material homogeneity is assumed.

Equation (7.4) can be written as
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Equation (7.7) describes the equilibrium of a region Sγ, where Sγ is a portion of a larger region. If all Qij are known,

usually by identification by homogeneous VFM, and u∗ are kinematically admissible, then summation of the integrals

should be zero; a non-zero result is termed to be an equilibrium gap. In practice, Ti are zero.

7.3.4 Fourier-VFM

A recent contribution to VFM is the solution of the PVW equation (Eq. (7.4) in the frequency domain) by means of Fourier

analysis.
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The spatially varying Qij are represented as
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Instead of using optimized, piecewise virtual fields described earlier, the virtual fields are unit amplitude sine/cosine

waves. A thorough description of this technique is provided by Nguyen et al. [6].

7.4 Results and Discussion

Figure 7.4 gives some results for each VFM analysis technique. When the inclusion is evident, the analyst must define the

boundary. For the example shown in Fig. 7.4a, S2 was defined as the region where Q11 > 11. 5 GPa. In practice the analyst

will likely choose many different boundaries and compare the identifications. Accurate identification of the maximum

stiffness in this simulation is difficult; as the area of S2 was reduced to a small region surrounding the peak stiffness, the

identification was compromised due to lack of data, i.e., the amount of strain data.

Figure 7.4b shows some results of the EG analysis; each virtual element included 16 (4 � 4) strain measurements whose

physical dimensions were 4.4 mm � 4.3 mm. An EG analysis provides equilibrium information at the center of the virtual

element, so Fig. 7.4b is shorter and narrower by 1/2 the length and height of the EG virtual element. Pragmatic use of EG

suggests that results of several sizes will be compared. The size chosen here was used to illustrate a potentially important

result, namely the size of the inclusion. Because the EG element scanned within the inclusion, the results indicated the

element was near equilibrium. Because Q11 and Q12 differed only a constant, 0.3 here, Q11 was effectively factored out of

Eq. (7.7). Therefore, an EG analysis provides information on inclusion boundaries. If an inclusion is not physically apparent,

an EG analysis can be used to locate inclusion boundaries which can, in turn, be used to create S1 and S2 regions for the VFM
technique where location of the inclusion is known a priori.

Figure 7.4c provides example Fourier VFM results. In Eqs. (7.8) and (7.9), N ¼ 34, giving total of 2449 coefficients

(am, n, bm, n) for Q11 alone. Results were smoothed with an 88� 88 pixel smoothing filter and Q11 identification was denoted

as NaN at the specimen edges. Because the grid simulated strains were 272 � 46 individual measurements, additional data

were needed in order to determine the large number of coefficients. The grid strains were interpolated to 6000 � 1000

individual measurements and the limiting factor for the size of N was the amount of data in x2 direction. Although data

interpolation is not a best practice, its use here provided similar information of inclusion size and location, as did the EG

analysis and can be similarly used to denote the inclusion boundary for the a priori VFM technique.

Finally, an infinite number of Qij parametrizations are possible, such as polynomial formulations, e.g., Devivier et al. [4].

Given the relatively small amount of data (272� 46 matrix size for each εi) and, in this simulation, the small size of inclusion

relative to the specimen dimensions, determination of the virtual displacements would lead to an ill-conditioned matrix

needed for polynomial Qi j identification.
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Fig. 7.4 Analysis results for each VFM technique. (a) S1–S2 technique. (b) Equilibrium gap technique. (c) Fourier VFM
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7.5 Conclusion

Three VFM techniques were used to characterize the simulated, smoothly varying heterogeneous stiffness in a uniaxial

tensile specimen. When the location of the inclusion was known, its stiffness could be identified within 10 % error; more

accurate identification is possible with increased strain data density. Local equilibrium was examined and used to approxi-

mate inclusion size and location. Fourier VFM was used to provide inclusion location and size, but required significant data

interpolation. Results of these three techniques suggest that their cooperative use could provide reasonable stiffness

identification for heterogeneous materials using a uniaxial tensile test.
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