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Abstract: Stress and strain concentrations and in-plane and out-of-plane stress constraint factors associated with a circular hole in thick,
loaded orthotropic composite plates are determined by three-dimensional finite element method. The plate has essentially infinite in-plane
geometry but finite thickness. Results for Sitka spruce wood are emphasized, although some for carbon-epoxy composites are included.
While some results are similar to those for isotropy, there are significant consequences due to material orthotropy. Maximum stress and
strain concentration factors occur at midplane for thin plates but closer to the external traction-free surfaces for thick plates. These factors
decrease as the plate surface is approached and reach lower values unrepresentative of the maximum values. Differences between the mid-
plane and/or maximum and surface stress or strain concentration factors in Sitka spruce, range from 8% if the wood grain is parallel to the
vertically applied load to 15% when the grain is perpendicular to the load. These values exceed those typically reported for isotropic materials.
Stress and strain concentration factors tend to differ in magnitude from each other. The combination of high local stresses and directional
strength dependency of orthotropic materials can be particularly important. That maximum stress and/or strain concentrations in thick plates
occur on other than the external plate surfaces where they are most readily measured is technically significant. The E11=E22 ratio in Sitka
Spruce exceeds that in the carbon composite by 60%. However, when loading parallel to the strong/stiff directions, the plane-stress tensile
stress concentration factors of the two materials are comparable to each other. DOI: 10.1061/(ASCE)EM.1943-7889.0001138. © 2016
American Society of Civil Engineers.

Author keywords: Holes; Thick plates; Three-dimensional stresses; Three-dimensional strains; Constraint factors; Orthotropy; Sitka
Spruce; Carbon/epoxy composite.

Introduction

Engineering components often involve holes or notches and an
assessment of the structural reliability necessitates knowing the
stresses and the strains associated with such geometric discontinu-
ities. Round holes are common, and their accompanying stresses
and strains can reduce mechanical performance. Such stress/strain
risers can precipitate cracks, thereby aggravating the situation
(Broek 1987).

Stress concentration factors are available for many plane-stress
isotropic cases (Timoshenko and Goodier 1970; Pilkey and Pilkey
2008; Young and Budynas 2002). Plane solutions are valid for
plates having vanishing thickness (plane-stress) compared to the
size of any cutouts or for infinite thickness (plain-strain). Not-
withstanding the technical importance, few theoretical/analytical
three-dimensional (3D) solutions exist for nontrivial geometries
or loading conditions.

Using a modified Ritz method, Sternberg and Sadowsky (1949)
obtained an approximate solution for the three-dimensional stress
distribution for a circular hole in a uniaxially loaded, infinite iso-
tropic plate having arbitrary thickness. They showed that for a plate

thickness 0.7 times the radius of the hole, the maximum stress con-
centration at the traction-free surface is 7% less, whereas that at
mid-plane is 3% higher, than the plane-stress value. Youngdal and
Sternberg (1966) subsequently found that for an infinitely thick
component subjected to shear, the maximum stress at the surface
of the hole is 23% less, and that at the depth equal to the hole radius
is 3% higher, than that for a thin component. Folias (1975, 1987)
and Folias and Wang (1990) demonstrated that the stress concen-
tration factor in a circularly perforated three-dimensional elastic
plate is sensitive to the plate thickness and Poisson’s ratio. The con-
dition starts to change from plane-stress to plane-strain when the
ratio of hole radius to plate thickness is 0.5. When this ratio is less
than 0.5, the maximum stress concentration factor occurs at the
midplane, and when this ratio exceeds 0.5, the maximum stress
concentration factor occurs close to the external traction-free sur-
faces. Based on the generalized plane-strain assumption that the
out-of-plane strain is a constant, Kotousov and Wang (2002a, b, c)
and Kotousov and Tan (2004) provided an analytical solution for
the three-dimensional stress distribution in an isotropic perforated
plate having arbitrary thickness. They considered the effects of
Poisson’s ratio and plate thickness on the in-plane stress concen-
tration factor and the out-of-plane stress constraint factor. Dai and
Gong (2013), by also assuming the out-of-plane strain in the thick-
ness direction is a constant, obtained a theoretical solution for
the three-dimensional stresses in an infinite isotropic elastic plate
perforated with a circular hole. Their results show differences be-
tween the three-dimensional and plane-stress solutions, a signifi-
cant effect of the Poisson’s ratio on the tangential stress near the
surface of the hole, and the effects of the plate thickness and
Poisson’s ratio on the stress concentration and the out-of-plane con-
straint factors. Yang et al. (2008) studied the coupled influence
of Poisson’s ratio and plate thickness on the stress and strain
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concentration factors using finite element method (FEM). The
magnitude of their stress and strain concentration factors differ.

The previously discussed analyses are for isotropic materials.
While extensive acceptance and use of orthotropic composite struc-
tures require confidence in their load carrying capacity, the authors
are unaware of prior publications addressing the 3D stress or strain
concentrations associated with geometric discontinuities in thick
orthotropic plates. The fact that orthotropic materials can produce
extremely high stress concentrations compared with isotropic
materials motivates the need to know the stresses in orthotropic/
composite structures containing holes or notches, including when
the thickness is large compared with the size of the discontinuities.

The present research considers the 3D stress and strain concen-
trations, and the in-plane and out-of-plane stress constraint factors,
in a large, uniaxially loaded, thick orthotropic plate containing a
circular hole. Although the behavior in Sitka spruce wood is em-
phasized since this is a commonly employed and highly orthotropic
(E11=E22 ¼ 23) structural material, some results for a unidirec-
tional carbon/epoxy composite (E11=E22 ¼ 14) are included to
illustrate the consequences of variations in orthotropy. Of struc-
tural relevance, Rhee et al. (2012) showed that the effect of stress
concentrations on strength in artificial composites can be appreci-
ably different than in natural orthotropic materials such as wood.
The situations at the edge of the hole are studied as a function of
changes in plate thickness and orthotropic directions. Where pos-
sible, the present results are correlated with available information.

Problem Definition

Geometry and Loading

A large, finite thickness homogeneous elastic plate containing a
hole of radius a is subjected to far-field vertical tensile stress, σ,
has a height 2H, width 2W and thickness 2L as shown in Fig. 1.
The origin of the xyz coordinate system is located at the middle of
the plate (and center of the hole). The plane z ¼ 0 is at the midplane
of the plate, and the plate has external traction-free vertical surfaces
at z ¼ �L. The half-width, W, and half-height, H, of the plate are
taken to be 100 times the radius of the hole, i.e., W=a ¼ H=a ¼
100. The normalized half-thickness of the plate L=a is varied from
0.1 (plane stress condition) to 10.

Stresses and Strains

The stress and strain concentration factors at the edge of the hole
in vertical planes of x ¼ a, y ¼ 0 and −L ≤ z ≤ L in Fig. 1 are
defined as

Kσ ¼ σyyða; 0; zÞ
σnet

; Kε ¼ εyyða; 0; zÞ
εnet

ð1Þ

where σnet ¼ σA=Anet and εnet ¼ σA=EAnet are the nominal stress
and strain at the net section of the plate; A = gross area,
i.e., A ¼ ð2LÞð2WÞ and the net area Anet ¼ ð2W − 2aÞð2LÞ. The
maximum stress and strain concentration factors occurring along
the z-axis at x ¼ a and y ¼ 0 are denoted by Kσ

max and Kε
max,

respectively. The values of Kσ and Kε at x ¼ a, y ¼ 0 and z ¼ 0
(at the midplane) are denoted by Kσ

mp and Kε
mp. The corresponding

values of Kσ and Kε on the external traction-free surfaces of the
plate (x ¼ a, y ¼ 0, and z ¼ �L) are denoted byKσ

sur andKε
sur, i.e.,

Kσ
max ¼ max

0≤z≤L
σyyða; 0; zÞ

σnet
; Kε

max ¼ max
0≤z≤L

εyyða; 0; zÞ
εnet

ð2Þ

Kσ
mp ¼

σyyða; 0,0Þ
σnet

; Kε
mp ¼

εyyða; 0,0Þ
εnet

ð3Þ

Kσ
sur ¼

σyyða; 0;�LÞ
σnet

· Kε
sur ¼

εyyða; 0;�LÞ
εnet

ð4Þ

The stress and strain concentration factors for plane-stress
condition are represented by Kσ

ps and Kε
ps, respectively. For a

plane-stress, perforated infinite orthotropic plate subjected to a
unidirectional tensile stress σ parallel to the y-axis, the in-plane
vertical stress distribution solution at y ¼ 0 in the vicinity of the
edge of the hole is (Lekhnitskii 1969)

σyyðx; 0Þ
σ

¼ 1þ Re

�
1

β − δ

� −δð1 − iβÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2 − 1 − β2

p
ðζ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2 − 1 − β2

p
Þ

þ −βð1 − iδÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2 − 1 − δ2

p
ðζ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2 − 1 − δ2

p
Þ

��
ð5Þ

where β and δ = imaginary parts of the complex material properties
and ξ ¼ x=a such that ζ ≥ 1. For an elastic orthotropic material in
three dimensions, εyy can be evaluated from Hooke’s law as (Daniel
and Ishai 2006)

εyy ¼
σyy

Ey
− νxy

Ex
σxx − νzy

Ez
σzz ¼

σyy

Ey

�
1 − νyxσxx

σyy
− νyzσzz

σyy

�
ð6Þ

Dividing Eq. (6) by εnet, rearranging and setting σnet ¼ Eyεnet,
the following expression can be obtained:

Kε ¼ Kσð1 − νyxTx − νyzTz − νyzTx · TzÞ ð7Þ
where Tz ¼ σzz=ðσxx þ σyyÞ is the out-of-plane stress constraint
factor; and Tx ¼ σxx=σyy is the in-plane stress constraint factor.
For a finite thickness orthotropic plate, the ratio of stress and strain
concentration factors, Kε=Kσ, is a function of Poisson’s ratios νyx
and νyz and the in-plane, Tx, and out-of-plane, Tz, stress constraint
factors [Eq. (7)]. Note that Tx ¼ 0 at ða; 0; zÞ for all z and Tz ¼ 0 at
the external traction-free surface ðx; 0;�LÞ.

Sitka Spruce Properties

The Sitka spruce constitutive properties employed are those of
Table 1. The xy-plane of the orthotropic wood plate is in the lon-
gitudinal (grain orientation) and tangential plane of the wood and
the axis of the hole is parallel to the radial direction of the wood or
z-direction (Fig. 1).

Fig. 1. Plate geometry and coordinate system

© ASCE 04016082-2 J. Eng. Mech.
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Finite Element Model

Due to symmetry, only one-eighth of the plate was modeled. The
FEM used ANSYS eight-node solid linear elements (Solid185).
Mapped meshing utilized 20 planar layers through the thickness
of the plate. The distance between each of these layers was fixed
and the in-plane size of the elements decreased as one approached
the hole. Because of the limited number of nodes allowed by
ANSYS, this mesh was too coarse to produce satisfactory results
in the region of the hole. A submodeling approach (also known
as the cut-boundary displacement method) was subsequently em-
ployed. By creating a finer mesh near the hole and applying sub-
modeling based on St. Venant’s principle, more reliable results
were obtained. However, accuracy necessitates the boundaries of
the submodel be sufficiently far from the hole. The one-eighth sub-
model had 25,000 elements and 27,716 nodes. This technique was
validated by comparing the numerically predicted variation of the
stress σyyðx; 0; zÞ, normalized by far-field stress, σ, on different
plane layers z=L parallel to the midplane for normalized thickness
L=a ¼ 5 with two-dimensional (2D) finite element analysis
(Alshaya 2016) and plane-stress distribution of Eq. (5) for x=a ≥ 1
shown in Fig. 2.

For the 3D state of stress around a circular hole of radius a in an
isotropic plate of thickness 2L subjected to a unidirectional tensile
stress σ parallel to the y-axis, Sternberg and Sadowsky (1949) de-
termined the radial, σrr, tangential, σθθ and axial, σzz stresses in the
vicinity of the edge of the hole to be

σrr ¼
1

2

�
1 − 1

ρ2

�
þ 1

2

�
1 − 4

ρ2
þ 3

ρ4

�
cos 2θ

þ 1

2Δ2
Z̄ 0 0
n cos 2θ

X2
i¼1

L
λ1i

ρqþi ð8Þ

σθθ ¼
1

2

�
1þ 1

ρ2

�
− 1

2

�
1þ 3

ρ4

�
cos 2θ

þ 1

2Δ2
Z̄ 0 0
n cos 2θ

X2
i¼1

1

ρqþi f½−ðqþ i − 1ÞLþ 1�λ1i

þ Lðλ2i þ 2λ3iÞg ð9Þ

σzz

cos 2θ
¼ 1

2
Z̄n

X2
i¼1

1

ρqþiþ2
f½4ð1þ i − 1ÞL − 4�λ1i

þ ½ð1þ i − 4ÞL − 1�λ2i þ ½−2ðqþ iþ 2ÞLþ 2�λ3ig
ð10Þ

where ρ ¼ r=a are dimensionless cylindrical coordinates; Δ ¼
L=a is thickness ratio; Z̄n ¼ Z̄nðξÞ ¼ Δ4ðξn − 1Þ2 and Z̄ 0 0

n are the
second derivative with respect to ξ ¼ z=L, LðrÞ ¼ ln r; and the ex-
ponents n, q as well as the values of λαi (α ¼ 1, 2, 3; i ¼ 1, 2) are
parameters that depend on Δ and ν. When Δ → 0, the equations
reduced to plane-stress. At the midplane, i.e., ξ ¼ 0, the last term
also vanishes, and the equations reduce to plane-stress regardless
of the value of thickness, Δ. Using the 3D submodeling FEM ap-
proach described previously, Fig. 3 compares the ANSYS result for
the stress σzz;max, normalized by far-field stress, σ, with that from

Fig. 2. Stress distribution, σyyðx; 0; zÞ=σ, for x=a ≥ 1 on different
planes, z=L, for thickness L=a ¼ 5 in Sitka spruce when longitudinal
axis (grain orientation, L-direction) is parallel to the applied vertical
stress, σ

Fig. 3. Analytical (data from Sternberg and Sadowsky 1949) and FEM
results for maximum normalized stress in the z-direction in a thick
perforated isotropic plate

Table 1. Constitutive Properties of the Sitka Spruce Wood (Data from
Wood Handbook 1999)

Property Value

Elastic moduli (MPa)
EL 11,450
ET 492
ER 893

Shear moduli (MPa)
GLT 698
GTR 34.4
GRL 733

Poisson’s ratios
νLT 0.47
νTR 0.25
νRL 0.04
νTL 0.025
νRT 0.46
νLR 0.37

Note: L, T, and R denote longitudinal, tangential, and radial directions of
the wood.

© ASCE 04016082-3 J. Eng. Mech.
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Eq. (10). The agreement between these numerical and analytical
results of Fig. 3 further demonstrates the reliability of the present
FEM model.

Results for Sitka Spruce

In-Plane Stresses

The variations of Tx ¼ σxx=σyy and stress ratio σyyðx; 0; zÞ=
σyyða; 0; zÞ versus ζ ¼ x=a ≥ 1 at y ¼ 0 on different vertical
perpendicular planes z=L for normalized plate thicknesses L=a ¼
5 are illustrated in Figs. 4 and 5 when the grain direction is parallel
to the applied stress, σ. These variations of Tx and σyyðx; 0; zÞ=
σyyða; 0; zÞ for Sitka spruce are similar to those for the isotropic

case (Yang et al. 2008), although the present maximum value
of Tx is considerably smaller. Values of Tx and σyyðx; 0; zÞ=
σyyða; 0; zÞ at fixed ζ are virtually insensitive to the different layers,
z=L. The present numerically predicted variation of σyyðx; 0; zÞ=
σyyða; 0; zÞ with ζ in Fig. 5 agrees reasonably well with the
plane-stress solution of Eq. (5).

If the wood grain orientation is perpendicular to the load, the
variations of Tx and σyyðx; 0; zÞ=σyyða; 0; zÞ versus distances ζ ¼
x=a ≥ 1 away from the hole on different planes, z=L, for thickness
L=a ¼ 5 are shown in Figs. 6 and 7, respectively. The variations of
Tx with ζ are now quite different than when the grain direction is
parallel to the externally applied stress, σ, or for isotropy (Yang
et al. 2008). Fig. 6 shows Tx increased monotonically to reach a
relative maximum value. This response is also quite different than
in Fig. 4 where values of Tx on the external traction-free surface in

Fig. 4. Variations in stress constraint factor, Tx, for x=a ≥ 1 on differ-
ent lateral planes (x, 0, z=L) in Sitka spruce for thickness L=a ¼ 5

when longitudinal axis (grain orientation, L-direction) is parallel to
applied vertical stress, σ

Fig. 5. Variations in stress ratio σyyðx; 0; zÞ=σyyða; 0; zÞ for x=a ≥ 1 on
different lateral planes (x, 0, z=L) in Sitka spruce for thickness L=a ¼ 5

when longitudinal axis (grain orientation, L-direction) is parallel to
applied vertical stress, σ

Fig. 6. Variations in stress constraint factor, Tx, for x=a ≥ 1 on differ-
ent lateral planes (x, 0, z=L) in Sitka spruce for thickness L=a ¼ 5

when longitudinal axis (grain orientation, L-direction) is perpendicular
to applied vertical stress, σ

Fig. 7. Variations in stress ratio σyyðx; 0; zÞ=σyyða; 0; zÞ for x=a ≥ 1 on
different lateral planes (x, 0, z=L) in Sitka spruce for thickness L=a ¼ 5

when longitudinal axis (grain orientation, L-direction) is perpendicular
to applied vertical stress, σ

© ASCE 04016082-4 J. Eng. Mech.
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Fig. 6 are much higher than internal values. The plane-stress sol-
ution of Eq. (5) and ANSYS prediction for σyyðx; 0; zÞ=σyyða; 0; zÞ
in Fig. 7 agree with each other.

Distributions of K σ and K ε As a Function of Plate
Thickness

Figs. 8–11 illustrate the distributions of the stress, Kσ, and strain,
Kε, concentration factors when not and when normalized by the
corresponding values at the midplane for different plate thicknesses
L=a when the wood grain direction is parallel or perpendicular
to the externally applied stress, σ. The stress or strain concentration
factors inside the wood plate can exceed those on the external
traction-free surfaces by at least 8% (Fig. 8) or 15% (Fig. 9). The
biggest differences occurred when L ¼ a.

Figs. 10 and 11 illustrate the maximum values of the normalized
strain, Kε=Kε

mp, concentration factors occur on the midplane
(z=L ¼ 0) of the spruce plate for small thicknesses L=a (thin
plates). As the plate thickness increased, the maximum values
occurred on lateral layers close to the external plate surfaces
(i.e., z=L ∼�0.9). This was not unlike the distributions of Kσ in
Fig. 8. When the orientation of the wood grain is parallel to the
externally applied stress, the variations of Kε=Kε

mp, with respect
to changes in thickness L=a, are relatively small in the middle re-
gion of the plate (Fig. 10). However, when the wood grain orien-
tation is perpendicular to the externally applied stress, the variation
in Kε=Kε

mp increased with respect to changes in thickness (Fig. 11).
The plate thicknesses at which the maximum ratios of the strain,
Kε=Kε

mp, concentration factors shift from midplane to a different
plane layer is called the transition thicknesses, L�

ε , of the strain

Fig. 8. Distribution of stress concentration factors, Kσ, through
the thickness in Sitka spruce for different thicknesses when longitudi-
nal axis (grain orientation, L-direction) is parallel to applied vertical
stress, σ

Fig. 9. Distribution of stress concentration factor, Kσ, through the
thickness in Sitka spruce for different thicknesses when longitudinal
axis (grain orientation, L-direction) is perpendicular to applied vertical
stress, σ

Fig. 10. Distribution of normalized strain concentration factors,
Kε=Kε

mp, through the thickness in Sitka spruce wood for different thick-
nesses when longitudinal axis (grain orientation, L-direction) is parallel
to applied vertical stress, σ

Fig. 11. Distribution of the normalized strain concentration factors,
Kε=Kε

mp, through the thickness in Sitka spruce for different thicknesses
when longitudinal axis (grain orientation, L-direction) is perpendicular
to applied vertical stress, σ

© ASCE 04016082-5 J. Eng. Mech.
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concentration factor. The transition thicknesses, L�
ε=a, of the strain

concentration factor were approximately 4.0 in Fig. 10 and 1.7 in
Fig. 11 when the grain direction was parallel and perpendicular to
the applied stress, σ, respectively. The maximum values of Kε=Kε

mp

increases with increasing plate thickness, L=a. Maximum values of
Kσ=Kσ

mp andKε=Kε
mp do not always occur on same plane layer, that

is the transition thicknesses of the stress and the strain concentra-
tion factor are not equal, L�

σ ≠ L�
ε (Alshaya 2016). For a thick

plate, the transition thickness L�
ε of the strain concentration factor

is smaller than the transition thickness L�
σ of the stress concentra-

tion factor. The Appendix contains some Kσ distributions for a uni-
directional graphite/epoxy composite.

Distributions of K σ
mp, K ε

mp, K σ
max, K ε

max, K σ
sur, and K ε

sur
As a Function of Plate Thickness

Fig. 12 shows that the distributions of the midplane (Kσ
mp and Kε

mp)
and maximum (Kσ

max and Kε
max) stress and the strain concentration

factors normalized by the plane-stress values (Kσ
ps and Kε

ps) at the
edge of the hole as a function of the spruce plate thickness, L=a.
Irrespective of the grain direction, all of these normalized quantities
are equal to 1.0 for a very thin plate, i.e., Kσ

mp ¼ Kε
mp ¼ Kσ

max ¼
Kε

max ¼ Kσ
ps. When the grain direction is perpendicular to the

applied stress, σ, Kσ
max=Kσ

ps (and Kσ
mp=Kσ

ps) and Kε
max=Kε

ps (and
Kε

mp=Kε
ps) increased to maximum values of 1.06 at L=a ∼ 1.5

and 1.03 at L=a ∼ 1.0, respectively. When the grain direction is
parallel to the applied stress, the values of all of these ratios initially
increased slightly and thereafter decreased to individual constant
values as L=a increases.

Fig. 12 also illustrates that when Kσ
max=Kσ

ps separates from
Kσ

mp=Kσ
ps, the transition thicknesses, L�

σ, of the stress concentration
factor are located at L=a ¼ 7.0 and 3.0, and when Kε

max=Kε
ps sep-

arated from Kε
mp=Kε

ps, the transition thickness, L�
ε , of strain concen-

tration factor was located at L=a ¼ 4.0 and 1.7 when the grain
direction is parallel and perpendicular to the applied stress, σ, re-
spectively. The values of Kσ

max=Kσ
ps exceeded those for Kε

max=Kε
ps.

The values of Kσ
max=Kσ

ps and Kε
max=Kε

ps are greater when the grain

orientation is perpendicular to the load than if they were parallel to
each other.

Fig. 13 demonstrates that the values of stress Kσ
sur and strain Kε

sur
concentration factors at the traction-free surfaces of the plate are
equal (although equal to different values depending whether the
grain is parallel or perpendicular to the externally applied stress)
for all the thicknesses. When the grain orientation parallels the
applied stress, σ, the surface stress Kσ

sur and strain Kε
sur concentra-

tion factors reached a minimum value of ðKσ
sur=Kσ

psÞmin ∼ 0.9 at
L=a ¼ 1.8, then increased gradually as the normalized thickness
increased.

Fig. 14 shows the differences between the midplane (Kσ
mp

and Kε
mp) or the maximum (Kσ

max and Kε
max) stress and strain

Fig. 12. Distributions of normalized midplane (Kσ
mp=Kσ

ps and
Kε

mp=Kε
ps) and maximum (Kσ

max=Kσ
ps and Kε

max=Kε
ps) stress and

strain concentration factors in Sitka Spruce as function of plate thick-
ness L=a for different grain orientations (parallel—solid line and
perpendicular—dashed line) to applied vertical stress, σ

Fig. 13. Distributions of normalized external traction-free surface
stress, Kσ

sur=Kσ
ps, and strain, Kε

sur=Kε
ps, concentration factors in Sitka

spruce as function of plate thickness L=a for different rain orientations
(parallel—solid line and perpendicular—dashed line) to applied verti-
cal stress, σ

Fig. 14. Differences between the normalized midplane, ðKσ
mp − Kσ

surÞ=
Kσ

ps, and maximum, ðKσ
max − Kσ

surÞ=Kσ
ps and surface stress concentra-

tion factors in Sitka spruce as a function of normalized plate thickness
L=a when the grain orientation is parallel and perpendicular to applied
vertical stress, σ

© ASCE 04016082-6 J. Eng. Mech.
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concentration factors and the plate’s surface values (Kσ
sur and Kε

sur)
normalized by the plane stress-state values (Kσ

ps and Kε
ps) versus

L=a for different grain orientations. The difference between mid-
plane Kσ

mp (or maximum Kσ
max) and surface Kσ

sur stress concentra-
tion factor increased with increasing thickness L=a until reaching a
maximum value of approximately 8% and 16% of the plane-stress
value when the grain orientation is parallel or perpendicular to the
vertically applied stress, σ, respectively (Fig. 14). After reaching
their maximum values, these quantities decreased gradually as
thickness, L=a, increased.

Fig. 15 illustrates trends similar to those in Fig. 14, although the
largest difference between the maximum and surface stress concen-
tration factors (Fig. 14) exceeds the maximum difference between
the midplane and surface strain concentration factors (Fig. 15).
The difference between midplane Kε

mp and surface Kε
sur strain

concentration factor increased with increasing thickness L=a until
reaching maximum values of approximately 8% and 12% of the
plane-stress value when the grain orientation is parallel and
perpendicular to the vertically applied stress, σ, respectively. After
reaching their maximum values, all curves of Figs. 14 and 15 de-
creased gradually with increasing thickness, L=a. Fig. 15 shows
that measured strains on the plate surface can be 12% less than
at midplane.

Relationship between Stress and Strain Concentration
Factors

For an orthotropic plate, the relationship between the stress and
strain concentration factors can be expressed by Eq. (7). Figs. 8–11
show that the distributions of stress concentration factors are dif-
ferent from strain concentration factors through the thickness of
the plate. For a finite thickness orthotropic plate, the ratio of the
stress and strain concentration factor, Kε=Kσ, is a function of
Poisson’s ratios νyx and νyz and the in-plane Tx and out-of-plane
Tz stress constraint factors [Eq. (7)]. Since Tx ¼ 0 for ða; 0; zÞ
and Tz ¼ 0 at the midplane (z=L ¼ 0) and on the external sur-
faces ða; 0;�LÞ, the stress and strain concentration factors are
equal, Kε ¼ Kσ at ða; 0;�LÞ. This is compatible with results
in Fig. 13. However, Tx ≠ 0 when x=a > 1 and Tz ≠ 0 if

0 < z=L < �1, so Kε ≠ Kσ when x=a > 1 and 0 < z=L < �1,
these features are substantiated in Figs. 16 and 17. The distribu-
tions of Kε=Kσ within the thickness, 0 < z=L < �1 at x=a ¼ 1
and y ¼ 0 is a function of the Poisson’s ratio, νyz, and out-of-
plane stress constraint factors (Tx ¼ 0, Tz ≠ 0). On the other
hand, the distributions of Kε=Kσ at x=a ≥ 1 on the external sur-
faces of the plate, y ¼ 0 and z ¼ �L, are a function of the Pois-
son ratio, νyx, and the in-plane stress constraint factor (Tz ¼ 0).

Distribution of K ε=K σ for x=a ≥ 1 for Different Plane
Layers

Figs. 16 and 17 show the distributions of Kε=Kσ at x=a ≥ 1, y ¼ 0
for different lateral planes parallel to the midplane of the plate for
L=a ¼ 1 and 5 when the grain orientation is parallel to the applied
stress. These distributions are different on different planes. Each
curve corresponding to its plane has a minimum value and location

Fig. 15. Differences between the normalized midplane, ðKε
mp − Kε

surÞ=
Kε

ps, and maximum, ðKε
max − Kε

surÞ=Kε
ps, and surface stress concentra-

tion factors in Sitka spruce as a function of normalized plate thickness
L=a when the grain orientation is parallel or perpendicular to applied
vertical stress, σ

Fig. 16. Distributions of Kε=Kσ in Sitka spruce on different planes
for L=a ¼ 1 when longitudinal axis (grain orientation, L-direction)
is parallel to applied vertical stress, σ

Fig. 17. Distributions of Kε=Kσ in Sitka spruce on different planes
for L=a ¼ 5 when longitudinal axis (grain orientation, L-direction)
is parallel to applied vertical stress, σ

© ASCE 04016082-7 J. Eng. Mech.
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which depends on Poisson’s ratios, the plane’s location, and the
thickness of the plate. All curves start at Kε=Kσ ¼ 1.0 on the edge
of the hole (ζ ¼ 1.0), decrease for ζ ≥ 0 (i.e., Tx ≠ 0) and pass
through minimum values at approximately at ζ ¼ 1.3. These mini-
mum values increase as one moves from the external surfaces
(z=L ¼ �1) toward the center of the plate (z=L ¼ 0).

Distribution of K ε=K σ along the Edge of the Hole for
Different Thicknesses

The distributions of Kε=Kσ along the edge of the hole and through
the thickness for different normalized thicknesses and different
grain orientations were obtained, and the minimum values through
the thickness of the edge of the hole occur on the midplane layer.
This minimum value decreased with the increasing normalized
thickness (Alshaya 2016).

Distribution of Midplane Values of K ε=K σ As a
Function of Thickness

Fig. 18 shows the distribution of midplane values of Kε
mp=Kσ

mp as a
function of plate thickness when the grain orientation is parallel or
perpendicular to the applied stress, σ. Starting at Kσ

mp ¼ 1, plane-
stress (i.e., L=a ∼ 0), these curves decreased monotonically with
increasing thickness until L=a > ∼4 where they approached con-
stant (but different) values. The magnitudes of Kε

mp=Kσ
mp for very

thick plates are substantially greater when the grain orientation of
the wood is parallel, rather than perpendicular, to the externally ap-
plied stress, σ.

Summary, Discussion, and Conclusions

1. Not unlike in isotropic plates (Yang et al. 2008), the stress and/
or strain concentrations in perforated loaded orthotropic plates
depend on the relative plate thickness. However, many results
under orthotropy can be quite different from those in isotropic
plates. In particular, they depend on whether the strongest/
stiffest principal material direction is parallel or perpendicular
to the direction of the external loading.

2. Figs. 4–7 show that the distributions of σyyðx; 0; zÞ=
σyyða; 0; zÞ, are similar for isotropic (Yang et al. 2008) and

orthotropic Sitka spruce plates when the vertical applied stress,
σ, is either parallel or perpendicular to the grain orientation.
However, the distribution of Tx for an orthotropic plate when
the applied stress, σ, is perpendicular to the grain can be dif-
ferent than when the applied stress, σ, is parallel to the grain or
for an isotropic material. When the wood grain orientation is
parallel to the applied loading, the maximum stress concentra-
tion factor occurs on the midplane and exceeds that on the ex-
ternal traction-free surface by ∼8% (Fig. 8). When the wood
grain is perpendicular to the applied loading (Fig. 9), the max-
imum stress concentration factor again occurs on the midplane
and is ∼15% higher than that on the external surface. By com-
parison, Sternberg and Sadowsky (1949) showed that for an
isotopic plate whose thickness is 0.7 that of the radius of
the hole, the maximum stress concentration factor at the
traction-free surface is 7% less, whereas that at the midplane
is 3% higher, than the plane-stress value. Even when all other
things are equal, unlike with isotropy, the stresses in orthotro-
pic materials depend on the constitutive properties.

3. Irrespective of whether or not they are normalized, the
through-thickness distributions of the stress or strain concen-
tration factors (Kσ or Kε) depend on the plate thickness
(Figs. 8–11). The maximum Kσ

max=Kσ
mp and Kε

max=Kε
mp at the

edge of the hole occur at the midplane (z=L ¼ 0) for relatively
thin plates but on various planes close to (but not at) the plate’s
external traction-free surfaces for thick plates.

4. For the present Sitka spruce material, for thicker plates, the
stress and strain concentration factors decrease rapidly near
the external traction-free surfaces (z=L ¼ �1) and reach lower
values that are not representative of the overall stress and strain
concentration factors through thickness (Figs. 8–11). The
stress or strain concentrations on the midplane can increase
from their plane-stress values when L=a ¼ 1 to some relative
maximum in a thicker plate and then decrease in much thicker
plates (Fig. 12).

5. The normalized stress and strain concentration factors
(Kσ

sur=Kσ
mp and Kε

sur=Kε
mp) at the edge of the hole are essen-

tially equal to each other and decrease with the increasing plate
thickness (Fig. 13).

6. Since the tensile strength transverse to the wood grain or the
fibers in structural orthotropic composites is usually appreci-
ably less than that parallel to the grain or fibers, the present
results can be particularly significant. For a plate is loaded
in tension, the structural strength can be very low when the
wood grain is perpendicular to the direction of externally
applied stress. On the other hand, the low tensile strength per-
pendicular to the strong/stiff material direction in orthotropic
composites can be particularly detrimental in tensile-loaded
bolted joints involving such materials in that it often leads to
splitting of the material supporting the bolt. Recognizing that
the worst stresses in thick plates frequently occur subsurface,
such splitting could initiate below the surface and hence not be
detected prior to catastrophic structural failure.

7. The distributions of Kε=Kσ for x=a ≥ 1 (away from the hole)
are different on different planes and each curve corresponding
to its plane has a minimum whose value depends on the Pois-
son’s ratios, plane-location, and the plate thickness (Fig. 16).
Although the present minimums in the Sitka spruce tend to
occur at a common location away from the hole, the minimum
locations might depend on material properties.

8. The directional strength dependency, combined with the fact
that stresses σx, σy, and σz can all be nonzero on internal
planes ahead of the hole (i.e., x=a ≥ 1), can be a strength con-
cern in orthotropic materials.

Fig. 18. Distribution of midplane Kε=Kσ at the edge of the hole in
Sitka spruce as a function of thickness when the grain orientation is
parallel or perpendicular to applied vertical stress, σ

© ASCE 04016082-8 J. Eng. Mech.
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9. That maximum stresses and/or strains associated with holes
can occur other than on the external traction-free plate surfaces
where measurements are most readily made is technically
significant.

10. The stress and strain concentrations factors are equal to each
other only at the edge of the hole.

11. This manuscript emphasizes the response in a highly orthotro-
pic structural material, Sitka spruce. However, the Appendix
contains some comparative results for a unidirectional carbon-
epoxy composite. As with the Sitka spruce, the maximum
stress concentrations in such artificial composites can occur
below the external surfaces.

12. The principal material directions are aligned here with the
plate geometry and loading. Consideration should be given to
cases when the principal material directions are inclined to the
plate geometry and direction of loading.

Appendix. Results for Carbon/Epoxy Composite

For the geometry and loading of Fig. 1, and elastic properties of
Table 2, Figs. 19 and 20 show the distributions of the stress con-
centration factors, Kσ, as a function plate thicknesses in a carbon/
epoxy plate when the strong/stiff orientation (one-direction) is

parallel or perpendicular to the externally applied stress. These re-
sults were obtained using the same ANSYS modeling as for wood.
The present trends are not unlike those for the Sitka spruce (Figs. 8
and 9). The plane-stress stress concentrations the edge of a round
hole in an infinite orthotropic plate is given by Lekhnitskii (1969)

Kσ ¼ 1þ Re

�
i
μ1 þ μ2

μ1μ2

�
ð11Þ

For the carbon/epoxy, Eq. (11) gives 5.57 and 2.40 for the load
parallel and perpendicular to strong/stiff orientation, whereas
Figs. 19 and 20 give 5.5 and 2.56 at L=a ¼ 1, respectively. When
the longitudinal axis (grain orientation, L-direction) in the Sitka
spruce is parallel and perpendicular to the applied vertical stress,
σ, Eq. (11) gives 5.99 and 2.0, respectively. For a thin plate (plane
stress), Figs. 8 and 9 give 5.35 and 2.08, respectively, at L=a ¼ 1.
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