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Abstract
There is a type of blocked experiment that has the potential of being poorly designed and/or an-

alyzed. Verrill et al. (1993, 1999, 2004) referred to such an experiment as a “predictor sort” ex-
periment. David and Gunnink (1997) spoke of “artificial pairing.” In text books it is sometimes
referred to as a “matched pair” or “matched subjects” design. The associated design process is also
sometimes described as “forming blocks via a concomitant variable.” Improperly designed and/or
analyzed, predictor sort experiments can be associated with incorrect/inadequate power calculations
and sample sizes, incorrect tests of hypotheses, and incorrect confidence intervals. In this paper we
review some of the results in the literature, add a section on multiple comparisons, and present re-
sults from power and confidence interval coverage simulations that emphasize the importance of the
proper design and analysis of predictor sort experiments.
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1. Introduction

There is a type of blocked experiment that has the potential of being poorly designed and/or
analyzed. Verrill et al. (1993, 1999, 2004) referred to such an experiment as a “predictor
sort” experiment. David and Gunnink (1997) spoke of “artificial pairing.” In text books it
is sometimes referred to as a “matched pair” or “matched subjects” design. The associated
design process is also sometimes described as “forming blocks via a concomitant variable.”
In a wood research context, Warren and Madsen (1977) described the specimen allocation
procedure as follows:

One can take steps, however, to ensure that the inherent [initial] strength distri-
butions of test and control samples are reasonably equivalent. Indeed, failure
to do so can only throw doubt on the results.

Specifically, then, all the boards in the experiment are ordered from weakest
to strongest as nearly as can be judged from their moduli of elasticity, knot
size, and slope of grain. To divide the material into J equivalent groups the
first J boards, after ordering, are taken and randomly allocated one to each
group. This is repeated with the second, third, fourth, etc., sets of J boards.
The strength distributions of the resulting groups should then be essentially the
same.

Here the response is lumber strength after a treatment, and the predictor/concomitant used
to form blocks (of size J) would be some combination of lumber stiffness, knot size, and
slope of grain (all of which can be measured non-destructively prior to specimen alloca-
tion).

In an agricultural context, the predictor/concomitant variable might be, for example,
animal age, initial animal weight, or plot fertility in a previous trial. In a behavioral or
educational context, the predictor might be, for example, IQ or performance on a pre-test.
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In this paper we will refer to this type of design as a “predictor sort” design (because
we sort specimens on the basis of a predictor that is correlated with the response, and then
form blocks via collections of specimens with adjacent predictor values). Our theory will
be established for the case in which the predictor and the response have a joint bivariate
normal distribution.

In his 1999 paper, Verrill cited discussions of this type of experiment in example 3.3 of
Cox (1958), section 8.2 of Steel and Torrie (1960), section 5.1 of Kirk (1968), section 13.17
of Finney (1972), example 11.3 of Ostle and Mensing (1975), Chapter 6 of Myers (1979),
and example 6.13.1 of Snedecor and Cochran (1989). A more recent sampling of statistical
texts found such experiments discussed in Kerlinger and Lee (1999), van Zutphen et al.
(2001), example 5.1 of Toutenburg (2002), section 4.3 of Ruxton and Colegrave (2006),
problem 3.8 of Casella (2008), Cozby and Bates (2011), Tuckman and Harper (2012), and
section 8.1 of Kirk (2013).

Among the variables suggested as predictors/concomitants to be used to form blocks
were age, reaction time, initial weight, concentration of blood constituent, degree of dis-
ease, time since college, IQ, scores on a cognitive ability measure, grade point average,
prior school performance, and pretest achievement.

Improperly designed and/or analyzed, predictor sort experiments can be associated with
incorrect/inadequate power calculations and sample sizes, incorrect tests of hypotheses, and
incorrect confidence intervals. Verrill (1993) and David and Gunnink (1997) focused on po-
tential problems with hypothesis tests given a predictor sort design. Verrill (1999) focused
on confidence intervals on means. Verrill et al. (2004) focused on confidence intervals on
quantiles. Because incorrect predictor sort designs and analyses can have serious adverse
effects on decision-making, and because this fact has not yet become common knowledge
among statisticians (or at least among text book authors), in this paper we review some of
the results in the literature, add a section on multiple comparisons, and present the results
from power and confidence interval coverage simulations that emphasize the importance of
the proper design and analysis of predictor sort experiments.

In section 2 we focus on hypothesis tests. In section 3 we discuss confidence intervals
on means. In section 4 we discuss Scheffé and Tukey multiple comparison tests and the
corresponding simultaneous confidence intervals. And in section 5, we describe web/R
programs that we have written to aid in the design and analysis of predictor sort experi-
ments.

2. Hypothesis Tests

We first set some useful notation. Here, for ease of exposition, we will restrict ourselves to
the one factor case. Let Yij denote the response for the ith block, i ∈ {1, . . . , I}, of the jth
treatment, j ∈ {1, . . . , J}. Let ρ denote the correlation between the predictor/concomitant,
X , and the response, Y . We assume thatX and Y have a joint bivariate normal distribution.

In a non predictor sort case, the probability model for a blocked ANOVA would be

Yij = µ·j + µi· + σY × εij (1)

where µ·1, . . . , µ·J denote the treatment effects, µ1·, . . . , µI· denote the block effects, and
the ε’s are i.i.d. N(0,1)’s. In a predictor sort case, we have n = JI specimens. To allocate
these specimens, we order the X’s and randomly assign the J specimens associated with
the lowest X values, to the first block, the specimens associated with the next J lowest
values to the next block, and so on. In this case, the correct probability model is

Yij = µj + σY

(
ρ
(
Xk(i,j),n − µX

)
/σX +

√
1− ρ2Pij

)
(2)
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where µ1, . . . , µJ denote the treatment effects, k(i, j) ∈ {(i − 1)J + 1, . . . , iJ}, Xl,n

denotes the lth order statistic among the X’s, and the Pij’s are i.i.d. N(0,1)’s that are inde-
pendent of the X’s.

The differences between models (1) and (2) (and, in particular, the fact thatXk(i,j1),n−
Xk(i,j2),n tends to be smaller than an arbitraryX1−X2 and yet not equal to 0) are the source
of both the advantages and the problems associated with predictor sort experiments. (More
detailed heuristic discussions are provided in Verrill (1993), Verrill and Green (1996), Ver-
rill (1999), and Verrill et al. (2004).)

Verrill (1993) proved the following theorem on hypothesis testing following a predictor
sort allocation.

Theorem 1
Assume that the predictor variable and the variable of interest have a joint bivariate

normal distribution with correlation ρ. Let the allocation of samples be as described in
Section 1. (For the multi-factor case, enough adjacent (in predictor values) experimental
units are chosen at a time to provide one additional observation for each cell.) Then, for
a factor with J levels, for 0 ≤ ρ < 1, the asymptotic distribution of the ANOVA test
statistic that treats the groups of adjacent (in predictor values) experimental units as a block
is χ2

J−1/(J − 1). The asymptotic distribution of the ANOVA test statistic that ignores the
block structure generated by these groups is (1− ρ2)χ2

J−1/(J − 1).
Proof
See Verrill (1993) for a 1-factor proof, and Appendix G of Verrill and Kretschmann

(2015) for a multi-factor proof.

Because of this asymptotic behavior, if we analyze a predictor sort experiment as a
blocked ANOVA (where the blocks are formed of specimens with similar predictor/concomitant
values — “matched subjects”) and I is sufficiently large, the nominal size of the test will
be approximately equal to the true size. (Actually, for very large ρ values, the true size is
reduced from the nominal size even for fairly large samples. See the web version of table 1
referenced below.) However, if we ignore the blocks in our analysis, the actual size can be
much lower than nominal size and power will suffer significantly. (We essentially end up
comparing (1− ρ2)χ2

J−1 random variables with χ2
J−1 critical values.)

To explore these effects we have performed a large power simulation of the 1-factor
case. For all combinations of X ,Y correlations 0.0, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, and 0.99;
number of treatments, J , equal to 2, 3, 5, 7, 9, 11, and 20; sample sizes, I , equal to 3, 5,
10, 20, and 40; and 21 noncentrality parameters, we performed 40,000 trials. We created
two versions of each of the resulting data sets. One version was created by allocating the
specimens in a data set to the J treatment conditions via a standard randomization. The
second version was created by allocating the specimens in a data set to the J treatment
conditions via a predictor sort.

We then performed performed seven hypothesis tests on the data sets, and two theoret-
ical power calculations:

1. A standard 1-way analysis of variance on the non predictor sort version of the data
set.

2. A standard (and thus incorrect) 1-way analysis of variance on the predictor sort ver-
sion of the data set.

3. A corrected 1-way analysis of variance on the predictor sort version of the data set.
The corrected F statistic is the standard 1-way statistic divided by 1− ρ̂2.
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4. A second corrected 1-way analysis of variance on the predictor sort version of the
data set. The corrected F statistic is the standard 1-way statistic divided by 1−ρ2true.

5. A 2-way analysis of variance on the predictor sort version of the data set. (The blocks
are formed by specimens with adjacent [randomized within the block] values of the
predictor.)

6. An analysis of covariance on the non predictor sort version of the data set.

7. An analysis of covariance on the predictor sort version of the data set.

8. The “theoretical” power for a a corrected 1-way analysis of variance on a predictor
sort version of the data set:

Prob
(

NCFJ−1,J(I−1)(γ) > F−1J−1,J(I−1)(1− α)
)

(3)

where NCF denotes a non-centralF distribution function, γ =
∑J

J=1 I(µj−µ̄·)2/(σ2Y (1−
ρ2)) is the non-centrality parameter of the noncentral F , and F−1 denotes the inverse
of a central F distribution function.

9. The “theoretical” power for a 2-way anova on a predictor sort version of the data set:

Prob
(

NCFJ−1,(J−1)(I−1)(γ) > F−1J−1,(J−1)(I−1)(1− α)
)

(4)

(The same non-centrality parameter is used in both (3) and (4).)

The results of these simulations for the J = 2, 5; I = 3, 5, 10, 20, 40; ρ = 0.5, 0.7, 0.9
cases are presented in table 1 of Verrill and Kretschmann (2015). The results for the remain-
ing cases can be found at http://www1.fpl.fs.fed.us/ps15 table1.html. Plots that present a
portion of the results of these simulations (J = 2, 5; I = 10, 20; ρ = 0.0, 0.5, 0.6, 0.7, 0.8,
0.9, 0.95, 0.99) appear in Verrill and Kretschmann (2015). The plot for the J = 2, I = 10,
ρ = 0.9 case appears in Figure 1. In these plots, the “noncentrality parameter index”
is the m in column 4 of the corresponding power table. See Appendix A of Verrill and
Kretschmann (2015) for a discussion of this index. “th” is the theoretical power calculated
by (3) and presented in column 12 of the power tables. “ps, ancov” is the power of an anal-
ysis of covariance after a predictor sort allocation (column 11 of the power tables). “ps,
two-way” is the power of a blocked analysis of variance after a predictor sort allocation
(column 9 of the power tables). “no ps, 1-way” is the power of a 1-way analysis of variance
after a standard (non predictor sort) random allocation of specimens (column 5 of the power
tables). “ps, 1-way, no rho” is the power of an uncorrected 1-way analysis of variance after
a predictor sort allocation (column 6 of the power tables).

An analysis of these tables and plots yields the following conclusions:

1. Large increases in statistical power and/or sample size reductions can be gained by
performing a predictor sort allocation and analysis. These improvements become
larger as the correlation, ρ, between the predictor and the response increases. Specif-
ically, if n samples are needed to achieve a given power when predictor sort alloca-
tion is not used, approximately (1 − ρ2)n samples are needed to achieve the same
power when predictor sort allocation is used. Thus, for example, a 0.7 correlation
yields, roughly, a halving of necessary sample size.

2. It is a statistical blunder to perform a predictor sort allocation and then follow the
allocation with a standard non predictor sort analysis of variance. Such an approach
can considerably reduce power.
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Figure 1: Power plot, ρ = 0.9, J = 2, I = 10.

3. After a predictor sort allocation has been performed, either an analysis of covariance
or a blocked analysis of variance should be performed. For ρ ≤ 0.8 and I ≥ 10, the
blocked analysis of variance performs almost as well as the analyis of covariance.
For higher ρ and/or smaller I , the analysis of covariance performs better.

4. For ρ ≤ 0.8 and I ≥ 10, the theoretical power of a blocked anova can be well
approximated by (4). For higher ρ, (4) overestimates the power available from a
blocked anova (especially for lower I).

5. It is well known (also see result (47) in Appendix B of Verrill et al. (2015)) that the
power of a 1-factor analysis of covariance for testing the hypothesis µ1 = . . . = µJ
is given by

Prob(NCFJ−1,IJ−(J+1)(γ) > F−1J−1,IJ−(J+1)(1− α))
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where

σ2anocov × γ =

J∑
j=1

I(µj − µ̄·)2 −

 J∑
j=1

I(µj − µ̄·)(x̄·j − x̄··)

2

/

J∑
j=1

I∑
i=1

(xij − x̄··)2

≥
J∑

j=1

I(µj − µ̄·)2 −

 J∑
j=1

I(µj − µ̄·)2
J∑

j=1

I(x̄·j − x̄··)2
 /

J∑
j=1

I∑
i=1

(xij − x̄··)2

=
J∑

j=1

I(µj − µ̄·)2
1−

J∑
j=1

I(x̄·j − x̄··)2/
J∑

j=1

I∑
i=1

(xij − x̄··)2
 (5)

and γ is the non-centrality parameter of the noncentral F . (The inequality in (5) is
due to the Cauchy-Schwarz theorem.)

The simulations established that for I ≥ 5, this is well approximated by

Prob(NCFJ−1,IJ−(J+1)(γ̂) > F−1J−1,IJ−(J+1)(1− α))

where γ̂ =
∑J

J=1 I(µj−µ̄·)2/(σ2Y (1−ρ2)) is an approximation to the non-centrality
parameter of the noncentral F . (Recall that in our case σ2anocov = σ2Y (1− ρ2).)

A listing of the simulation program that produced the power estimates can be obtained
at http://www1.fpl.fs.fed.us/ps15 powersim code.html. A web-based simulation program
that can be run on additional cases (including multi-factor cases) can be found at
http://www1.fpl.fs.fed.us/pspower.html.

It can be argued that in a predictor sort situation a statistician would undoubtedly per-
form a blocked analysis (or an analysis of covariance using the predictor/concomitant as
the covariate). However, some authors of statistical texts for non-statisticians (see, for
example, some of the texts listed in Section 1) appear to treat “matched subject” alloca-
tions as good experimental practice regardless of the subsequent analyses. (For example,
one of the texts discussed matching, t tests, and ANOVAs, but not paired t-tests, blocked
ANOVAS, or analyses of covariance.) Given that very poor power can result if a predictor
sort allocation is analyzed via an unblocked ANOVA, authors of (at least) statistical texts
for non-statisticians need to make this clear. This is especially true for fields in which
concomitants might be highly correlated with responses.

3. Confidence Intervals on Means

Verrill (1999) established the following theorem.
Theorem 2
Assume that the predictor variable and the variable of interest, Y , have a joint bivariate

normal distribution with correlation ρ. Denote the variance of Y by σ2Y . Suppose that there
are I blocks and F factors with K1, . . . ,KF levels. Let the allocation of samples be as
described in Section 1. (For a multiple factor case, enough adjacent experimental units
would be chosen at a time to provide one additional observation for each cell.) Let Ȳ·j1·...·
be the standard estimate of the mean response for the j1th level of factor 1. Then√

I ×K2 × . . .×KF

(
Ȳ·j1·...· − E

(
Ȳ·j1·...·

)) D→ N
(
0, σ2Y (1− ρ2 + ρ2/K1)

)
as I →∞. The analogous results hold for factors 2, . . . , F .
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Why can this result lead to problems?
If the predictor sort nature of an experiment is neglected, then the confidence interval

that is constructed for the mean response associated with level j1 of factor 1 is

ȳ·j1·...· ± t× s/
√
I ×K2 × . . .×KF (6)

where t is the appropriate critical value, and s is the root mean residual sum of squares from
the ANOVA. Verrill (1993) established (see the appendix of the 1993 paper, or Appendix
G of Verrill et al. (2015)) that in a predictor sort case, if the problem is treated as a K1 ×
. . .×KF ANOVA with I replicates per cell, the mean residual sum of squares, s2unblocked,
satisfies

s2unblocked
p→ σ2Y (7)

as I increases to infinity. If the problem is treated as as one involving I blocks with 1
replicate per cell, the mean residual sum of squares, s2blocked, satisfies

s2blocked
p→ (1− ρ2)σ2Y (8)

where ρ is the correlation between the predictor used in the sort and Y .
But by Theorem 2 above, the appropriate large sample value for s in (6) is

σY
√

1− ρ2 + ρ2/K1

rather than σY or σY
√

1− ρ2. This discrepancy is the source of the coverage problems.
Let

Rub(ρ, J) ≡ 1/
(
(1− ρ2 + ρ2/J)

)1/2
and

Rb(ρ, J) ≡
(
(1− ρ2)/(1− ρ2 + ρ2/J)

)1/2
.

(Notice that we are switching from the “K” treatments notation of the 1999 paper to a “J”
treatments notation here.)

In figure 33 of Verrill et al. (2015) values of Rub(ρ, J) are plotted. These R values
approximate the factor by which confidence interval sizes are incorrectly inflated when a
standard unblocked ANOVA is performed in a predictor sort case.

In figure 34 of Verrill et al. (2015) values ofRb(ρ, J) are plotted. These values approx-
imate the factor by which confidence interval sizes are incorrectly deflated when a standard
blocked ANOVA is performed in a predictor sort case.

In figure 35 of Verrill et al. (2015) values of

2× Φ
(
Φ−1(.975)×Rub(ρ, J)

)
− 1

are plotted where Φ denotes the cumulative distribution function of a N(0,1). These values
approximate the actual confidence levels that are associated with nominal 95% confidence
intervals in the unblocked case.

Finally, in figure 36 of Verrill et al. (2015), reproduced here as Figure 2, values of

2× Φ
(
Φ−1(.975)×Rb(ρ, J)

)
− 1

are plotted. These values approximate the actual confidence levels that are associated with
nominal 95% confidence intervals in the blocked case.

From these plots it is clear that, given a predictor sort design, for higher ρ values,
the confidence interval lengths and coverages produced by standard ANOVA analyses are
unacceptable.
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Figure 2: Blocked ANOVA. Actual coverage of a nominal 95% confidence interval.

Verrill (1999) suggested two possible fixes to incorrect confidence intervals on the µj’s
(1-factor treatment means) in the predictor sort case. First, he noted that the s in (6) could
be “corrected” by multiplying it by an estimate of

√
1− ρ2 + ρ2/J in the unblocked case

or by an estimate of
√

1− ρ2 + ρ2/J/
√

1− ρ2 in the blocked case. He then performed
simulations that indicated the number of replications that would be needed to ensure that
these asymptotically correct adjustments would yield good confidence interval coverages.
These numbers were reported in his tables 1 and 2. These tables indicated that for larger ρ’s,
fairly large sample sizes would be needed to ensure good µj confidence interval coverages.
This problem appears to be driven by the sensitivity of the corrections to ρ̂.

We have since realized that it is possible to avoid this problem by making use of results
(7) and (8). Together, they imply that

s2unblocked − s2blocked
p→ ρ2σ2Y

and
s2blocked +

(
s2unblocked − s2blocked

)
/J

p→ (1− ρ2 + ρ2/J)σ2Y

so, in the 1-factor case, we can take the corrected “anova z” confidence interval on µj to be

ȳ·j ± z
(√

s2blocked +
(
s2unblocked − s2blocked

)
/J

)
/
√
I (9)

where z = Φ−1(1− α/2) for a 1− α confidence level, and the corrected “anova t” confi-
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dence interval on µj to be

ȳ·j ± t
(√

s2blocked +
(
s2unblocked − s2blocked

)
/J

)
/
√
I (10)

where t = T−1J(I−1)(1− α/2) for a 1− α confidence level, and TJ(I−1) denotes the cumu-
lative distribution function of a t distribution with J(I − 1) degrees of freedom (this is an
ad hoc choice for degrees of freedom).

The second solution that was blithely and incorrectly proposed by Verrill (1999) was
an analysis of covariance. Recall (equation (2)) that in a 1-factor predictor sort case, we
have

Yij = µj + σY

(
ρ
(
Xk(i,j),n − µX

)
/σX +

√
1− ρ2Pij

)
or

Yij = µj − ρ σY µX/σX + ρ σY Xk(i,j),n/σX +
√

1− ρ2 σY Pij

= aj + bXk(i,j),n +
√

1− ρ2 σY Pij (11)

where
aj = µj − ρ σY µX/σX

and
b = ρ σY /σX

Now
aj + b x̄·· = µj − ρ(σY /σX)µX + ρ(σY /σX)x̄··

is an approximation to µj and, given the x’s and model (11) , it is well known that âj + b̂x̄··
has variance (

1/I + (x̄·j − x̄··)2/

(
J∑

k=1

I∑
i=1

(xik − x̄·k)2

))
(1− ρ2)σ2Y (12)

For large I this is of the order
(1− ρ2)σ2Y /I

But as noted above, this is an underestimate of the variance of the estimator. This is essen-
tially due to the fact that we are treating x̄·· as a constant when, instead,

Var(aj + b× x̄··) = b2σ2X/(IJ)

= ρ2σ2Y /σ
2
X × σ2X/(IJ)

= σ2Y ρ
2/(IJ)

In Appendix C of Verrill et al. (2015), we show that under a standard (non predictor sort)
allocation,

âj + b̂x̄·· = ȳ·j − b̂(x̄·j − x̄··) = ȳ·j − ρ̂(σ̂Y /σ̂X)(x̄·j − x̄··) = µ̂j (13)

where âj and b̂ are the standard analyis of covariance estimators, and ρ̂, σ̂Y , σ̂X , and µ̂j
are maximum likelihood estimators. In Appendix D of Verrill et al. (2015), we show that
under maximum likelihood regularity conditions (which we do not verify at this point)

√
I(µ̂j − µj)

D→ N(0, σ2Y (1− ρ2 + ρ2/J)) (14)
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From results (13) and (14) we have, under a standard (non predictor sort) allocation,

√
I(ȳ·j − b̂(x̄·j − x̄··)− µj)

D→ N(0, σ2Y (1− ρ2 + ρ2/J)) (15)

In Appendix E of Verrill et al. (2015), we show that under a predictor sort allocation, result
(15) continues to hold.

Thus, in the 1-factor case, we can take the corrected “anocov z” confidence interval on
µj to be

ȳ·j − b̂(x̄·j − x̄··)± z
(√

s2blocked +
(
s2unblocked − s2blocked

)
/J

)
/
√
I (16)

where z = Φ−1(1 − α/2) for a 1 − α confidence level, and the corrected “anocov t”
confidence interval on µj to be

ȳ·j − b̂(x̄·j − x̄··)± t
(√

s2blocked +
(
s2unblocked − s2blocked

)
/J

)
/
√
I (17)

where t = T−1JI−(J+1)(1−α/2) for a 1−α confidence level (again, the degrees of freedom
are ad hoc).

We have performed simulations on 1-factor predictor sort anovas and anocovs to eval-
uate the resulting confidence interval coverages. For all combinations of X ,Y correlations
0.5, 0.6, 0.7, 0.8, 0.9, 0.95, and 0.99; number of factor levels, J , equal to 2, 3, 5, 7, 9,
11, and 20; sample sizes, I , equal to 3, 5, 10, 20, 40, and 80; and confidence levels 90%
and 95%, we performed 10,000 trials. For each of the resulting data sets we calculated
standard unblocked and blocked anova confidence intervals on µ1, corrected z and t anova
confidence intervals on µ1, a “standard” anocov confidence interval on µ1, corrected z and
t anocov confidence intervals on µ1, and the maximum likelihood confidence interval on
µ1.

In accord with the reasoning associated with (12), we calculated the “standard” anocov
confidence interval as

ȳ·j − b̂(x̄·j − x̄··)± tsanocov

√√√√1/I + (x̄·j − x̄··)2/

(
J∑

k=1

I∑
i=1

(xik − x̄·k)2

)

The results of the 95% confidence interval simulations are presented in table 2 of Verrill
et al. (2015). The results of both the 90% and 95% confidence interval simulations are
available at
http://www1.fpl.fs.fed.us/ps15 table2.html.

For the 95% confidence interval simulations, we fit the model

coverage− .95 = c1/I
1/2 + c2/I + c3/I

3/2

to the tabled coverages, and then used the resulting fits to estimate the I’s at which the
actual coverages would first fall between .94 and .96. As an illustration, the data and fits
for the J = 3, ρ = 0.8 case are plotted in figures 37 (anova) and 38 (anocov) of Verrill
et al. (2015). The estimated needed I’s are provided in table 3 of Verrill et al. (2015).
For blocked anovas, these I’s are much improved over the comparable values reported in
Verrill’s (1999) table 2. For unblocked anovas and J ≥ 5, these I’s are much improved
over the comparable values reported in Verrill’s (1999) table 1.

It is clear from the 95% and 90% confidence interval simulation tables that
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1. The confidence interval coverage simulation results are in accord with the large sam-
ple results expressed in figures 35 and 36 of Verrill et al. (2015). That is, for higher
ρs, an uncorrected 1-factor/unblocked ANOVA will lead to confidence interval cov-
erages that are larger than the nominal coverages and a 1-factor/blocked ANOVA
will lead to coverages that are lower than nominal coverages. Also, as expected from
the discussion in connection with result (12), uncorrected anocov analyses will lead
to actual coverages smaller than nominal coverages.

2. Corrected anova’s and anocov’s yield good coverages for reasonable sample sizes.

3. For ρ ≤ 0.80, good coverages are obtained most quickly/for the smallest samples
sizes by taking a “uses t” approach. That is, we use the appropriate t critical value
rather than the appropriate z critical value. For ρ ≥ 0.90, corrected anova’s yield
correct coverages most quickly if a “uses t” aproach is taken for J = 2 and a “uses
z” approach is taken otherwise. For ρ ≥ 0.90, corrected anocov’s yield correct
coverages most quickly if a “uses t” aproach is taken for J = 2, 3 and a “uses z”
approach is taken otherwise.

4. The maximum likelihood actual coverage is slow to converge to the nominal cover-
age.

A listing of the simulation program that produced the table 2 coverage estimates in
Verrill et al. (2015) can be obtained at http://www1.fpl.fs.fed.us/ps15 confsim code.html.
A web-based simulation program that can be run on additional cases (including multi-factor
cases) can be found at http://www1.fpl.fs.fed.us/psconf.html.

4. Scheffé and Tukey multiple comparison procedures after a predictor sort
allocation

As one would expect given the hypothesis test results established in Verrill (1993), for
large sample sizes, suitably altered versions of the Scheffé and Tukey multiple comparison
procedures are valid after a predictor sort allocation. In this section, for the Tukey case,
we describe the alterations and establish the needed asymptotic results. The Scheffé case
is considered in section 5 of Verrill et al. (2015).

We first introduce the notation that we will use in this section. Assume that we have
F factors, Kj levels for the jth factor, and I blocks (formed by specimens with adjacent
[randomized within a block] order statistics of the predictor). Let n ≡ IK1 . . .KF , and
{Xi, i = 1, . . . , n}, {Zi, i = 1, . . . , n} be i.i.d. N(0,1) random variables. Define Wi ≡
σY

(
ρXi +

√
1− ρ2 Zi

)
. Then the Wi’s are i.i.d. N(0, σ2) and

corr(Xi,Wj) =

{
ρ if i = j
0 otherwise

We model predictor sort allocation by ordering the X’s (the predictors), and randomly
dividing the W ’s that correspond to X(i−1)K1...KF+1,n, . . . , XiK1...KF ,n among the K1 ×
K2 × . . .×KF treatments. (Here, Xl,n is the lth order statistic among the X’s.)

Let Yij1...JF denote µj1·...· + . . . + µ·...·jF plus the ith W that is assigned to treatment
j1 . . . jF , where, for example, µj1·...· denotes the effect associated with the j1th level of
factor 1, and µ·...·jF denotes the effect associated with the jF th level of factor F. Then

Yij1...jF = µj1·...· + . . .+ µ·...·jF + σY

(
ρXk(ij1...jF ),n +

√
1− ρ2 Pij1...jF

)
(18)
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where k(ij1 . . . jF ) ∈ {(i− 1)K1 . . .KF + 1, . . . , iK1 . . .KF }, and the Pij1...jF are i.i.d.
N(0,1) and are independent of the X’s.

(Note that there is some ugly notation here. The “ij1 . . . jF ” in k(ij1 . . . jF ) is not a
product and k(ij1 . . . jF ) should really be written as k(i, j1, . . . , jF ), but for simplicity, we
omit the commas. On the other hand, “iK1 . . .KF ” actually is a product.)

4.1 Tukey’s multiple comparison test/procedure

Theorem 4
Assume that the predictor variable and the variable of interest, Y , have a joint bivariate

normal distribution with correlation ρ. Denote the variance of Y by σ2Y . Suppose that
there are I blocks and F factors with K1, . . . ,KF levels. Let the allocation of samples
be as described in Section 1. (For a multiple factor case, enough adjacent experimental
units would be chosen at a time to provide one additional observation for each cell.) Let
Ȳ·j1·...· be the standard estimate of the mean response for the j1th level of factor 1. For
comparisons of the factor 1 levels, let the numerator of the test statistic be given by

QI ≡ max
l1,l2∈{1,...,K1}

√
IK2 . . .KF |Ȳ·l1·...· − Ȳ·l2·...·|

Let s2ub denote the estimate of σ2 in the unblocked case. That is,

s2ub ≡ SSden,unbl/(IK1 . . .KF − (K1 +K2 − 1 + . . .+KF − 1)) (19)

where

SSden,unbl =

I∑
i=1

K1∑
j1=1

. . .

KF∑
jF=1

(yij1...jF − (ȳ·...· + (ȳ·j1·...· − ȳ·...·) + . . .+ (ȳ·...·jF − ȳ·...·)))
2

Let s2b denote the estimate of σ2 in the blocked case. That is,

s2b ≡ SSden,bl/(IK1 . . .KF − (I +K1 − 1 + . . .+KF − 1)) (20)

where

SSden,bl =
I∑

i=1

K1∑
j1=1

. . .

KF∑
jF=1

(yij1...jF − (ȳ·...· + (ȳi·...· − ȳ·...·) + . . .+ (ȳ·...·jF − ȳ·...·)))
2

Let FR(K1) denote the distribution of the range of a sample ofK1 independent N(0,1)’s.
Then, under the null hypothesis that µ1·...· = . . . = µK1·...·,

QI/
(
sub
√

1− ρ2
)

D→ FR(K1) (21)

and
QI/sb

D→ FR(K1) (22)

Similar results hold for factors 2 through F .
Proof
The proof appears in Appendix F of Verrill et al. (2015).

We have performed simulations on 1-factor predictor sort anovas to evaluate the result-
ing sizes of Tukey tests. For all combinations of X ,Y correlations 0.0, 0.5, 0.6, 0.7, 0.8,
0.9, 0.95, and 0.99, number of treatments, J , equal to 3, 5, 7, 9, 11, and 20, and sample
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sizes, I , equal to 3, 5, 10, 20, and 40, we performed 100,000 trials. For each of the re-
sulting data sets we calculated a standard unblocked Tukey test statistic on the equivalence
of the J treatment means, an unblocked Tukey test statistic that has been corrected by an
estimated

√
1− ρ2 factor, an unblocked Tukey test statistic that has been corrected by the

true
√

1− ρ2 factor, and a blocked Tukey test statistic. In table 4 of Verrill et al. (2015),
we report the resulting actual test sizes when the nominal size is 0.05.

We can conclude from this table that

1. For the non-zero ρ’s considered, a standard unblocked Tukey test (one that uses an
sub denominator with no ρ correction) yields test sizes that can be much less than the
nominal test size.

2. For lower I , an unblocked Tukey test that has been corrected via an estimated ρ
yields test sizes that can be much more than the nominal test size.

3. For lower I , and ρ = 0.5, 0.6, an unblocked Tukey test that has been corrected via
the true ρ yields test sizes that can be lower than the nominal test size. For lower I ,
and ρ = 0.8, 0.9, 0.95, 0.99, an unblocked Tukey test that has been corrected via the
true ρ yields test sizes that can be much higher than the nominal test size.

4. In general, a blocked Tukey test (one that uses an sb denominator) yields actual test
sizes that closely match the nominal 0.05 test size. The blocked Tukey test does
perform somewhat poorly in the ρ = 0.95, .99 cases.

A listing of the simulation program that produced the size estimates can be found at
http://www1.fpl.fs.fed.us/ps15 tukey size sim code.html.

Simultaneous confidence intervals based on Tukey’s multiple comparison test are de-
scribed in section 5.4 of Verrill et al. (2015).

5. Web Programs/R Programs

Forest Products Laboratory scientists have produced predictor sort web programs that help
researchers

1. choose sample sizes (perform power calculations) for predictor sort hypothesis tests

2. allocate specimens via a predictor sort

3. perform hypothesis tests for a simple 1 factor, 2 levels predictor sort experiment

4. perform simulations to estimate the coverage of predictor sort confidence intervals
on treatment means

These programs can be accessed at http://www1.fpl.fs.fed.us/predsort.html. This web page
also contains a link to R code that helps users calculate predictor sort confidence intervals
on treatment means.

We have also developed interactive Java code that permits a user to obtain small sample
confidence intervals on quantiles in the predictor sort case. This work will appear in a
separate Forest Products Laboratory technical report.
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6. Summary

We have reminded readers that, properly designed and analyzed, predictor sort experiments
(experiments in which the predictor variable is used to form blocks) permit scientists to
achieve considerable increases in statistical power and/or reductions in sample sizes (and
thus reductions in experimental costs). For analysis of variance tests of hypotheses, sample
sizes can be reduced from roughly n to (1 − ρ2)n where ρ is the correlation between the
predictor/concomitant and the variable of interest. For confidence intervals on quantiles,
approximate sample size reductions are illustrated in figure 40 of Verrill et al. (2015). They
can amount to 30% for ρ equal to 0.70, and increase as ρ increases.

Our studies also indicate that the 1 − ρ2 factor is only approximate, especially for
blocked anovas (as opposed to analyses of covariance). Thus, we have provided a web
based simulation program that yields estimates of actual powers (in addition to estimates
based on large sample theory).

We have demonstrated that if a scientist performs a predictor sort allocation, but then
analyzes the experiment as an unblocked analysis of variance, their experiment can have
extremely low statistical power (an inability to detect actual differences). This amounts to
a serious scientific blunder.

We have demonstrated theoretically that given a predictor sort allocation, unmodified
analyses of variance (blocked or unblocked) and analyses of covariance yield incorrect
confidence intervals on treatment means. (The confidence intervals are too wide in the
unblocked anova case and too narrow in the blocked anova and analysis of covariance
cases.) We have provided a web based simulation program that estimates the coverages of
incorrect (unmodified) anova confidence intervals on treatment means, and the coverages
of corrected anova and anocov confidence intervals. We have also provided an R function
that helps a scientist calculate corrected confidence intervals on treatment means estimated
from a predictor sort experiment.

Finally, we have developed Scheffé and Tukey multiple comparison tests and associated
simultaneous confidence intervals that are appropriate in the predictor sort case.

All of our results have been established under an assumption of a joint bivariate normal
relationship between the predictor and the response.

As noted earlier, it can be argued that in a predictor sort situation a professional statis-
tician would undoubtedly perform a blocked analysis or an analysis of covariance using
the predictor/concomitant as the covariate, and thus, we need not exercise special care in
identifying, designing, and analyzing predictor sort experiments. We have a five-fold re-
sponse. First, identifying a design as a predictor-sort design permits a scientist to perform
correct power calculations. Second, blocked anova hypothesis tests can perform poorly as
ρ becomes sufficiently large. Third, although unmodified blocked anovas (for lower ρ’s)
and analyses of covariance yield essentially correct hypothesis tests, they yield incorrect
confidence intervals on treatment means. Fourth, blocked anovas and analyses of covari-
ance do not help us in the quantile estimation case. Finally, as noted at the end of Section 2,
we have seen introductory texts that treat predictor sort allocation as a good experimental
practice independent of the method of analysis. (For example, one of the texts we sam-
pled discussed matching, t tests, and ANOVAs, but not paired t-tests, blocked ANOVAS, or
analyses of covariance.) Given the large decrease in power (especially for larger ρ’s) that
can occur if a predictor sort experiment is analyzed via an unblocked anova, this pedagogy
must be corrected.
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