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Asymptotically Efficient Estimation of a Bivariate 
Gaussian–Weibull Distribution and an Introduction 

to the Associated Pseudo-truncated Weibull 

STEVE P. VERRILL, JAMES W. EVANS, DAVID E. 
KRETSCHMANN, AND CHERILYN A. HATFIELD 

USDA Forest Service Forest Products Laboratory, Madison, Wisconsin, USA 

Two important wood properties are stiffness (modulus of elasticity or MOE) and bending 
strength (modulus of rupture or MOR). In the past, MOE has often been modeled 
as a Gaussian and MOR as a lognormal or a two or three parameter Weibull. It is 
well known that MOE and MOR are positively correlated. To model the simultaneous 
behavior of MOE and MOR for the purposes of wood system reliability calculations, 
we introduce a bivariate Gaussian–Weibull distribution and the associated pseudo-
truncated Weibull. We use asymptotically efficient likelihood methods to obtain an 
estimator of the parameter vector of the bivariate Gaussian–Weibull, and then obtain 
the asymptotic distribution of this estimator. 

Keywords Bivariate Gaussian-Weibull; Gaussian copula; Likelihood methods; Modu
lus of rupture; Modulus of elasticity; Normal distribution; One-step Newton estimator; 
Reliability; Weibull distribution. 

1. Introduction 

Two important wood properties are stiffness (modulus of elasticity or MOE) and bending 
strength (modulus of rupture or MOR). In the past, MOE has often been modeled as a 
Gaussian and MOR as a lognormal or a two- or three-parameter Weibull; see, for example, 
ASTM, 2010a; Evans and Green, 1988; Green and Evans, 1988. 

Design engineers must ensure that the loads to which wood systems are subjected 
rarely exceed the systems’ strengths. To this end, ASTM D 2915 (ASTM, 2010a) and 
ASTM D 245 or ASTM D 1990 (ASTM 2010b,c) describe the manner in which “allowable 
properties” are assigned to populations of structural lumber. In essence, an allowable 
strength property is calculated by estimating a fifth percentile of a population (actually 
a 95% content, one-sided lower 75% tolerance bound) and then dividing that value by 
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“duration of load” (aging) and safety factors. The intent is that the population can only be 
used in applications in which the load does not exceed the allowable property. Of course 
there are stochastic issues associated with variable loads, uncertainty in estimation, and 
the division of a percentile with no consideration of population variability. Thus, from 
a statistician’s perspective, this is not an ideal approach to ensuring reliability of wood 
systems. However, it is the currently codified approach. 

To apply this approach, one must obtain estimates of the fifth percentiles of MOR 
distributions. Currently, one method for obtaining estimates involves fitting a two-parameter 
Weibull distribution to a sample of MORs. To obtain this fit, either a maximum likelihood 
approach or a linear regression approach based on order statistics is permitted under ASTM 
D 5457 (ASTM, 2010d). 

Unfortunately, these methods are often applied to populations that are not really dis
tributed as two-parameter Weibulls. For example, in the United States, construction grade 2 
by 4’s are often classified into visual categories—select structural, number 1, number 2—or 
into machine stress-rated (MSR) grades. In the case of MSR grades, MOE boundaries are 
selected, MOE is measured nondestructively, and boards are placed into categories based 
upon the MOE bins into which the boards fall. Because MOE and MOR are correlated, 
bins with higher MOE boundaries also tend to contain board populations with higher MOR 
values. The fifth percentiles of these MOR populations are sometimes estimated by fitting 
Weibull distributions to these populations. Statisticians recognize that this poses a problem. 
Even if the full population of lumber strengths were distributed as a Weibull, we would not 
expect that subpopulations formed by visual grades or MOE binning would continue to be 
distributed as Weibulls. 

In fact, such a subpopulation is not distributed as a Weibull. Instead, if the full joint 
MOE–MOR population were distributed as a bivariate Gaussian–Weibull, the subpopulation 
would be distributed as a “pseudo-truncated Weibull” (PTW). In this article, we obtain the 
distribution of a PTW and show how to obtain estimates of its parameters and its quantiles 
by fitting a bivariate Gaussian–Weibull to the full MOE–MOR distribution. To do this, we 
first define a particular form of a bivariate Gaussian–Weibull distribution. In Secs. 2 and 
3 of this article, we describe this form and establish that it can be fit by asymptotically 
efficient likelihood methods in the full MOE–MOR case. In Secs. 4 and 5, we discuss the 
truncated case and derive the density of a PTW. 

We note that the bivariate Gaussian–Weibull distribution has uses other than as a gener
ator of pseudo-truncated Weibulls. For example, engineers who are interested in simulating 
the performance of wood systems must begin with a model for the joint stiffness, strength 
distribution of the members of the system; see, for example, Rosowsky and Yu (2004), 
Rosowsky et al. (2005), and Triche and Partain (2006). Provided that we are considering 
the full population, a Gaussian–Weibull is one possible model for this joint distribution. 

Bivariate Gaussian–Weibull distributions have not yet appeared in the literature. How
ever, Gumbel (1960), Freund (1961), Marshall and Olkin (1967), Block and Basu (1974), 
Clayton (1978), Lee (1979), Hougaard (1986), Sarker (1987), Lu and Bhattacharyya (1990), 
Patra and Dey (1999), Johnson et al. (1999), Quiroz Flores (2010), Lee et al. (2011), and 
others have previously investigated bivariate Weibulls. 

We note that the bivariate Gaussian–Weibull distribution that we investigate in the 
current paper is not the only possible bivariate distribution with Gaussian and Weibull 
marginals. In essence we begin with a “Gaussian copula”—a bivariate uniform distribu
tion generated by starting with a bivariate normal distribution and then applying normal 
cumulative distribution functions to its marginals. However, there is a large literature on 
alternative copulas (multivariate distributions with uniform marginals); see, for example, 
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Nelsen (1999) and Jaworski et al. (2010). These alternatives would lead to alternative bi
variate Gaussian–Weibulls. Ultimately, the test of the usefulness of our proposed version 
of a Gaussian–Weibull for a particular application will depend on the match between the 
theoretical distribution and data. Still, we believe that the analysis of our proposed version 
in the current paper represents a useful step in the construction and evaluation of bivariate 
Gaussian–Weibull distributions. 

2. A Bivariate Gaussian–Weibull Distribution 

To generate a bivariate Gaussian–Weibull distribution, we follow Johnson and Kotz (1972); 
see also Kotz et al. 2000. (Taylor and Bender, 1988, 1989, introduced this technique in a 
lumber context.) Let X1, X2 be distributed as independent N(0,1)’s. Define X = μ + σX1 /
and Y = ρX1+ 1 − ρ2X2. Then X is distributed as a N(μ, σ 2), Y is distributed as a N(0,1), 
and their correlation is ρ. Now let  U = <(Y ). Then U is a Uniform(0,1) random variable 
that is correlated with X. Finally, let W = (− ln(1 − U ))1/β/γ . Then W is distributed as a 
Weibull with shape parameter β and scale parameter 1/γ , and the pair X,W have our joint 
“bivariate Gaussian–Weibull” distribution. (Verrill and Kretschmann, 2010, Appendix B, 
performed simulations that indicate that the sample correlation between X and W will be 
very close to the generating bivariate normal correlation, ρ.) In this article, we require that 
β >  1. Given this generating process, it is straightforward to show (see Appendix A) that 
the joint density is given by 

gaussweib(x,w; μ, σ, ρ, γ, β) ≡ γ ββwβ−1 exp(−(γw)β)  (1)  

1 1 ×√ / exp (− ((x − μ)/σ
2π σ 1 − ρ2 )− ρy)2 /(2(1 − ρ2)) , 

where 

y = <−1(1 − exp(−(γw)β)) 

and < is the N(0,1) cumulative distribution function. 
In Fig. 1, we provide a contour plot of the bivariate Gaussian–Weibull distribution 

for a coefficient of variation (CV) equal to 0.15 and a generating correlation equal to 0.7. 
Additional plots are provided in Verrill et al. (2012a). Note in these plots that as the CV 
declines from 0.35 to 0.25 to 0.15 (as the Weibull shape parameter increases from 3.13 
to 4.54 to 7.91) the density contours become much less elliptical. That is, the distribution 
diverges from a bivariate normal. We would expect this as a Weibull is “like a normal” 
for shape near 3.6 (skewness equals 0.00056, excess kurtosis equals -0.28), and a Weibull 
becomes skewed to the left and leptokurtic as the shape increases. 

3. Asymptotic Distribution of the Estimated Parameter Vector 
of the Bivariate Gaussian–Weibull Distribution 

Assume that we have have n independent pairs of observations, (x1, w1), . . . , (xn,wn) from  
the bivariate Gaussian–Weibull distribution. Then we have the following theorem. 

Theorem 3.1. 

D√ 
n(θ̂ − θ) → N(0, I (θ )−1), (2) 

http:from3.13
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Figure 1. Contour plot of the bivariate Gaussian–Weibull density for Gaussian and Weibull coeffi
cients of variation equal to 0.15 and a generating correlation of 0.7. 

where θ ≡ (μ, σ, ρ, γ, β)T , μ, ˆ ρ, ˆ β)T is the one-step Newton estimator based on θ̂ ≡ ( ˆ σ ,  ̂ γ ,  ̂
bivariate Gaussian–Weibull theory (the gradient and Hessian used to calculate the Newton 
step correspond to the first and second partials of the full Gaussian–Weibull likelihood), 
and the step is taken from the initial estimate θ i ≡ (μi, σi, ρi, γi, βi)T where μi, σi are the 
usual univariate maximum likelihood estimators of the mean and standard deviation of a / nGaussian (x̄ and j=1(xj − x̄)2/n ), γi, βi are the usual univariate maximum likelihood 

estimators of 1/scale and shape for a Weibull (see, for example, Johnson et al., 1994), ρi√ 
is the n-consistent estimator of ρ introduced in Appendix B, and the elements of I (θ ) are 
listed in Appendix C. That is, θ̂ is given by the Newton step 

θ̂ = θ i − H−1g|θ i (3)|θ i 

where the jth element of the gradient g|θ i is the first partial of the log likelihood with respect 
to the jth parameter at θ i and the j, kth element of the Hessian H|θ i is the second partial 
of the log likelihood with respect to the jth and kth parameters at θ i . 

Proof. The proof is an application of Theorem 4.2 of Chapter 6 of Lehmann (1983). 
To invoke Lehmann’s theorem, we must first establish that the ρ estimator introduced in √ 
Appendix B is indeed n-consistent. The proof of this fact is outlined in Appendix B and 
is provided in full in Verrill et al. (2012a). 

We must then establish Lehmann’s conditions. That his conditions (A0)–(A2) and A 
hold is clear. Lehmann’s condition (B)(8) is established in Appendix E1 of Verrill et al. 
(2012a). Lehmann’s condition (B)(9) is established in Appendices E2 and E3 of Verrill et al. 
(2012a). The fact that the information matrix is positive definite (Lehmann’s condition C) 
is established in Appendix D of the current paper. Lehmann’s condition (D) is established 
in Appendix J of Verrill et al. (2012a). D 



D
ow

nl
oa

de
d 

by
 [

],
 [

St
ev

e 
V

er
ri

ll]
 a

t 0
7:

43
 0

7 
A

ug
us

t 2
01

5 

2961 Efficient Estimation of a Bivariate Gaussian-Weibull 

4. A Truncated Bivariate Gaussian–Weibull Distribution 

In wood engineering applications, it is often the case that we do not have data from a 
full bivariate Gaussian–Weibull distribution. Instead, we have data from the subpopulation 
that is formed by considering lumber whose MOE values lie between two pre-determined 
limits, cl and cu (that is, we have machine stress-rated lumber). It is clear that the joint 
density in this case is 

gaussweib(x, w; μ, σ, ρ, γ, β)/ (< ((cu − μ)/σ ) − <((cl − μ)/σ )) (4) 

for x between cl and cu and 0 elsewhere. 

5. The Pseudo-Truncated Weibull Distribution 

The pseudo-truncated Weibull distribution function at w is given by integrating the truncated 
bivariate Gaussian–Weibull density (4) over the region [cl, cu] × [0, w]. That is, from 
Eq. (1),  w 

FPTW(w) = F1(s) × F2(s)/ (<((cu − μ)/σ ) − <((cl − μ)/σ )) ds (5) 
0 

where 

F1(s) ≡ γ ββsβ−1 exp(−(γ s)β )  (6)  

and  cu 

F2(s) ≡ √ 
1 / 1 

exp 
(− ((x − μ)/σ − ρy)2 /(2(1 − ρ2))

) 
dx (7) 

cl 2π σ 1 − ρ2 / /
= <((cu − μ)/(σ 1 − ρ2 ) − ρy/ 1 − ρ2 ) / /

− <((cl − μ)/(σ 1 − ρ2 ) − ρy/ 1 − ρ2 ), 

where 

y = <−1(1 − exp(−(γ s)β )) 

From results (5)–(7), the pseudo-truncated Weibull density is given by 

fPTW(w) = γ ββwβ−1 exp(−(γw)β )  (8)  ( ( ( / ) / )
× < (cu − μ)/ σ 1 − ρ2 − ρy/ 1 − ρ2 

( ( / ) / ))
− < (cl − μ)/ σ 1 − ρ2 − ρy/ 1 − ρ2 

/(<((cu − μ)/σ ) − <((cl − μ)/σ )), 

where ( ))−1 
(

y = < 1 − exp −(γw)β 

Thus, as we would expect, for ρ = 0, the pseudo-truncated Weibull density is simply the 
Weibull density, γ ββwβ−1 exp(−(γw)β ). 
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Figure 2. Weibull probability plot of a pseudo-truncated Weibull with generating coefficient of 
variation equal to 0.25 and generating correlation equal to 0.0. The straight line is the ordinate equals 
abscissa line. 

In Appendix K of Verrill et al. (2012a), we show that as ρ → 1, the density of a 
pseudo-truncated Weibull density converges to the density of a truncated Weibull. 

Figures 2 and 3 are (one version of) Weibull probability plots of PTW data. We plot the 
ordered data from a PTW sample against the predicted ordered data from the best Weibull 
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Figure 3. Weibull probability plot of a pseudo-truncated Weibull with generating coefficient of 
variation equal to 0.25 and generating correlation equal to 0.99. The straight line is the ordinate 
equals abscissa line. 
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Efficient Estimation of a Bivariate Gaussian-Weibull 

fit to the data. If the data really were Weibull, then the plots would be approximately linear. 
In Fig. 2, the generating X, Y correlation was 0, so the data actually was Weibull and the 
plot is approximately linear. In Fig. 3, the generating X, Y correlation was 0.99, so the 
data was “far from Weibull” and the plot is quite nonlinear. For both data sets, the Weibull 
coefficient of variation was 0.25 and cl and cu corresponded to the 0.2 and 0.8 quantiles of 
the Gaussian distribution. 

In Appendix L of Verrill et al. (2012a), we formally establish that for ρ �= 0, pseudo
truncated Weibull distributions are not Weibull distributions. 

6. Summary 

In the context of wood strength modeling, we have introduced a bivariate Gaussian–Weibull 
distribution and the associated pseudo-truncated Weibull distribution. In this article, we 
have obtained the asymptotic distribution of the estimated parameter vector for a bi
variate Gaussian–Weibull distribution. In Verrill et al. (2012b,c) we describe a Web-
based program that obtains this asymptotically efficient estimate, simulations that in
vestigate the small sample properties of this estimate, and additional simulations that 
establish that Weibull fits to PTW data can yield poor estimates of probabilities of 
failure. 
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2965 Efficient Estimation of a Bivariate Gaussian-Weibull 

Appendix A—Bivariate Gaussian–Weibull Density 

Let X, Y have a joint bivariate normal distribution with 

X ∼ N(μ, σ 2) 

Y ∼ N(0, 1) 

and correlation(X, Y ) = ρ. 
Since Y ∼ N(0, 1), we know that <(Y ) is distributed as a Uniform (0,1). (Here, < 

denotes the N(0,1) cumulative distribution function.) Thus, we know that 

W ≡ (− ln (1 − <(Y )))1/β /γ ∼ Weibull(γ, β)  (A.9)  

(a two-parameter Weibull distribution with scale parameter 1/γ and shape parameter β). 
We then say that X, W have a bivariate Gaussian–Weibull distribution with parameters 

μ, σ , ρ, γ , and β. 
Using the multivariate form of the change-of-variables theorem (see, for example, 

Rudin 1987), we can calculate the joint density function of X,W . First, we invert Eq. (9) 
to obtain 

−1 
( ( ))

Y = < 1 − exp −(γW )β

Thus, the transform that takes (x,w) to (x, y) is      

=

T(x,w) = T1(x,w) 
T2(x,w)

The corresponding Jacobian matrix is

= x 
< 1 − exp(−(γw)β)−1 

( )

    
∂T1/∂x ∂T1/∂w 1 0 
∂T2/∂x ∂T2/∂w 0 γ ββwβ−1 exp(−(γw)β)/φ(<−1(1 − exp(−(γw)β)))

and the absolute value of its determinant is 

det = γ ββwβ−1 exp(−(γw)β)/φ(<−1(1 − exp(−(γw)β))). 

Thus, the Gaussian–Weibull pdf at x,w is 

bivnorm(x, y, μ, σ, ρ) × det, (A.10) 

where 

−1 
( ( ))

y = < 1 − exp −(γw)β (A.11) 

and 

1 1 
bivnorm (x, y, μ, σ, ρ) = × / × exp(arg) 

2π σ 1 − ρ2 

where (
2
)

arg = − (x − μ)2/σ 2 − 2ρ(x − μ)y/σ + y /(2(1 − ρ2)) (
2
)

2 2 2= − (x − μ)2/σ 2 − 2ρ(x − μ)y/σ + ρ y + y 2 − ρ y /(2(1 − ρ2)) 

http:�(�w)�(A.11
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2966 Verrill et al. 

2= − ((x − μ)/σ − ρy)2 /(2(1 − ρ2)) − y /2 

That is, the Gaussian–Weibull pdf at x,w is given by ( )
gaussweib(x,w; μ, σ, ρ, γ, β) ≡ γ ββwβ−1 exp −(γw)β (A.12) 

1 1 ×√ / exp (− ((x − μ)/σ
2π σ 1 − ρ2 

−ρy)2/(2(1 − ρ2))) 

√ 
Appendix B— n-consistent Initial Estimators of the Parameters 

We first list a lemma that provides a useful fact about the tail behavior of normal distri
butions. Versions of this fact have appeared previously in the statistical literature. See, for 
example, the discussions of “Mills’ ratio” in Kendall and Stuart (1977) and Johnson et al. 
(1994). The particular form of the fact described in Lemma 1 is due to Gordon (1941). A 
simple proof of Lemma 1 is given in Verrill and Durst (2005). 

Lemma B.1. For x <  0, 

2x /(x 2 + 1) < <(x)/ (φ(x)/(−x)) < 1 (B.13) 

and for x >  0, 

x 2/(x 2 + 1) < (1 − <(x))/(φ(x)/x) < 1, (B.14) 

where <(x) is the N(0,1) cumulative distribution function and φ(x) is the N(0,1) probability 
density function. 

Now, to invoke Theorem 4.2 of Lehmann (1983) to establish that our final estimators 
of the parameters are asymptotically efficient, we need to establish that our initial estimates √ √ √ 
of the parameters are n-consistent. (ân is a n-consistent estimator of a if n(ân − a) = 
Op(1). A sequence of random variables {Xn} is Op(1) if given any E >  0, we can find 
constants ME,NE such that n > NE implies that Prob(|Xn| > ME) < E.) As our initial 
estimators of μ and σ , we take the univariate Gaussian maximum likelihood estimators /
x̄ = xi/n and s = (xi − x̄)2/n. As our initial estimators of γ and β we take the 
univariate Weibull maximum likelihood estimators, γ̂ and β̂; see, for example, Johnson √ 
et al., 1994. Thus, our initial estimators of μ, σ , γ , and β are n-consistent. Our initial 
estimator of ρ is given by /

ρ̂ ≡ ŝxy/ sxx ŝyy (B.15) 

where 

n L
ŝxy ≡ (xi − x̄)(ŷi − ŷ̄) 

i=1 

n L
sxx ≡ (xi − x̄)2 

i=1 

http:�x�)2/n.As
http:�(�w)�(A.12
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2967 Efficient Estimation of a Bivariate Gaussian-Weibull 

n L 
ŝyy ≡ (ŷi − ŷ̄)2 

i=1 

n L 
ŷ̄ ≡ ŷi/n 

i=1 

and ( ( ))
−1 β ŷi ≡ g(wi ; γ̂ , β̂) ≡ < 1 − exp −(γ̂ wi)

ˆ
(B.16) 

Theorem B.1. 
√ 

n (ρ̂ − ρ) = Op(1) 

where ρ̂ is defined in Eq. (15). 

Proof. We only outline the proof here. Details can be found in Appendix B of Verrill et al. 
(2012a). 

Define 

n L 
sxy ≡ (xi − x̄)(yi − ȳ) 

i=1 

n L 
y)2 syy ≡ (yi − ¯

i=1 

n L 
ȳ ≡ yi/n, 

i=1 

where 

−1 
( ( ))

yi ≡ g(wi ; γ, β) ≡ < 1 − exp −(γwi)
β (B.17) 

(The distinction between the “hatted” variables in definitions (16) and the “unhatted” 
variables in definitions (17) is that in the hatted case, γ, β  are replaced by their estimates 
ˆ β.)γ ,  ̂

We know that 

√ 
r ≡ sxy/ sxxsyy
 

√ √
 
is a n-consistent estimator of ρ. (That is, we know that n(r − ρ) = Op(1).) Thus, we 
will be done if we can show that 

√ 
n (r − ρ̂) = Op(1) (B.18) 

We have /√ 
r − ρ̂ = sxy/ sxxsyy − ŝxy/ sxx ŝyy 

n n 
i=1(xi − x̄)(yi − ȳ) i=1(xi − x̄)(ŷi − ŷ̄) = √ − √ 

sxxsyy sxxsyy 

http:�(��wi)�(B.16
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2968 Verrill et al. 

n n 
i=1(xi − x̄)(ŷi − ȳ̂) i=1(xi − x̄)(ŷi − ŷ̄)+ √ − /

sxxsyy sxx ŝyy 

≡ D1 + D2 (B.19) 

√ 
To show that nD1 = Op(1), we need to show that 

n√ L ( )
n (xi − x̄) yi − ȳ − (ŷi − ŷ̄) /n = Op(1) (B.20) 

i=1 

pnBy the Cauchy-Schwarz inequality and the fact that i=1(xi − x̄)2/n → σ 2, we know that 
we can establish result (20) by establishing that 

n L( )2 
yi − ȳ − (ŷi − ȳ̂) = Op(1) (B.21) 

i=1 

and it is clear that result (21) follows if 

n L 
(yi − ŷi)

2 = Op(1) (B.22) 
i=1 

n n 2(This follows because i=1(zi − z̄)2 ≤ z .)i=1 i 
From definitions (16) and (17) we have 

n n L L( ( ))2
(yi − ŷi)

2 = g(wi ; γ, β) − g wi ; γ̂ , β̂ (B.23) 
i=1 i=1 

By Taylor’s theorem this equals 

n 2 L ∂g(wi ; θ ) |θ∗,i (γ̂ − γ ) + 
∂g(wi ; θ ) |θ∗,i 

(
β̂ − β

) 
(B.24)

∂γ  ∂β 
i=1 

where θ = (γ, β)T and θ∗,i ≡ (γ∗,i , β∗,i)T lies on the line between (γ, β)T and (γ̂ , β̂)T . 
Thus, given the Cauchy-Schwarz inequality, to establish result (22), it is sufficient to 

establish 

L n 
∂g(wi ; θ) 2 

|θ∗,i (γ̂ − γ )2 = Op(1) (B.25) 
∂γ  

i=1 

and 

n 2 L ∂g(wi ; θ ) ( )2ˆ|θ∗,i β − β = Op(1) (B.26) 
∂β 

i=1 

Because γ̂ and β̂ are the maximum likelihood estimates of γ and β, to establish results 
(25) and (26), it is sufficient to establish 

L n 
∂g(wi ; θ ) 2 

|θ∗,i /n = Op(1) (B.27) 
∂γ  

i=1 

http:wi;��,��(B.23
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2969 Efficient Estimation of a Bivariate Gaussian-Weibull 

and 

L n 
∂g(wi ; θ ) 2 

|θ∗,i /n = Op(1)	 (B.28) 
∂β 

i=1 

Consider result (27). We have 

n 2	 2 L	 L∂g(wi ; θ )	 ∂g(wi ; θ )
/n =	 /n|θ∗,i	 |θ∗,i

∂γ 	  ∂γ  
i=1	 wi<wlow 

L ∂g(wi ; θ ) 2 

+	 /n|θ∗,i
∂γ  

wlow≤wi ≤wup 

L ∂g(wi ; θ ) 2 

+	 /n|θ∗,i
∂γ  

wup<wi 

≡ S1 + S2 + S3, 

where 0 < wlow < wup. Now  we have  

∂g(wi ; θ )	 ( ) ( −1 
( ( )))β∗,i −1 β∗,i|θ∗,i = β∗,iγ∗,i wi exp −(γ∗,iwi)

β∗,i /φ < 1 − exp −(γ∗,iwi)
β∗,i . (B.29)

∂γ  

It is clear that this is “essentially” bounded for S2. However, for  S1 and S3 we have both numerators 
and denominators that are going to 0. The result is not immediately obvious. In Verrill et al. (2012a) 
we use Lemma 1 to show that S1 and S3 are Op(1). 

This establishes result (27). Thus, to complete the proof of (22) we need to establish 
result (28). In general, the proof of result (28) is essentially the same as the proof of result 
(27); see Verrill et al. (2012a) for details. 

As noted above, results (27) and (28) establish results (25) and (26) which establish 
result (22) which establishes 

√ 
n D1 = Op(1).	 (B.30) 

To complete the proof of the theorem we now need to show that 

√ 
n D2 = Op(1).	 (B.31) 

To establish (31), we first need to establish a few facts about yi and ŷi . By the Cauchy-
Schwarz inequality and result (22), we have 

n√ � � √ L 
n ȳ − ȳ̂ ≤ n |yi − ŷi | /n 

i=1 

1/2n 

≤ √ 
n	 

L 
(yi − ŷi)

2 /n 
i=1 

1/2n L 
= (yi − ŷi)

2 = Op(1). 
i=1 
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2970 Verrill et al. 

Thus, 

√ ( ) √ ( ) ( )2 2n ŷ̄ − ȳ = n ŷ̄ − ȳ ŷ̄ + ȳ = Op(1). (B.32) 

By the Cauchy-Schwarz inequality, we have 

n n L L 
(ŷi + yi)

2/n = (ŷi − yi + 2yi)
2/n (B.33) 

i=1 i=1 � n n n � L L L � 2 � = � (ŷi − yi)
2/n + 4 (ŷi − yi)yi/n + 4 y /n�i 

i=1 i=1 i=1 

1/2 1/2n n n L L L 
2≤ (ŷi − yi)

2/n + 4 (ŷi − yi)
2/n y /ni 

i=1 i=1 i=1 

n L 
+4 y 2/n. i 

i=1 

By results (22) and (33) and the fact that 

n L p2 y /n → E(Y 2)i 
i=1 

we have 

n L 
(ŷi + yi)

2/n = Op(1) (B.34) 
i=1 

By the Cauchy-Schwarz inequality and results (22) and (34) we have 

n � n � � �√ L( ) √ L � 2 2 � � � 
n � ŷ − y /n� = n � (ŷi − yi) (ŷi + yi) /n� (B.35)i i 

i=1 i=1 

1/2 1/2n n√ L L 
≤ n (ŷi − yi)

2 /n (ŷi + yi)
2 /n 

i=1 i=1 

= Op(1) 

By results (32) and (35) we have 

n n√ ( ) √ L L
22 2 2 n ŝyy/n − syy/n = n ŷi /n − ŷ̄ − yi /n − ȳ (B.36) 

i=1 i=1 

n√ L( ) ( )
22 2 2= n ŷ − y /n − ŷ̄ − ȳi i 

i=1 

= Op(1) 
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2971 Efficient Estimation of a Bivariate Gaussian-Weibull 

From result (36) we have 

√ (/ / ) √ ( ) (/ / )
n ŝyy/n − syy/n = n ŝyy/n − syy/n / ŝyy/n + syy/n 

= Op(1). (B.37) 

Now 

n n 
1(xi − x̄)(ŷi − ȳ̂) 1(xi − x̄)(ŷi − ŷ̄)i= i=D2 ≡ √ − / (B.38) 

sxxsyy sxx ŝyy / /
n 
i=1(xi − x̄)(ŷi − ŷ̄) sxx ŝyy/n2 − sxxsyy/n2 

= × /
n sxxsyysxx ŝyy/n4 

≡ F1 × F2. 

By the Cauchy-Schwarz inequality and (36) 

1/2 1/2n n L L 
|F1| ≤  (xi − x̄)2/n (ŷi − ȳ̂)2/n (B.39) 

i=1 i=1 / / p= sxx/n ŝyy/n → σ × 1. 

By results (37) and (38) 

√ 
sxx√ 

nF2 = / /n × √ 
n 
(/

ŝyy/n −/
syy/n 

) 
= Op(1) (B.40) 

sxxsyysxx ŝyy/n4 

Results (38)–(40) imply that 

√ 
nD2 = Op(1) (B.41) 

This completes the proof of the theorem. D 

Appendix C—Elements of the Information Matrix 

Denote the information by ⎛ ⎞ 
a11 a12 a13 a14 a15 ⎜ ⎟a12 a22 a23 a24 a25 ⎜ ⎟ ⎜ ⎟I (θ ) ≡ a13 a23 a33 a34 a35 ⎜ ⎟ ⎝ ⎠a14 a24 a34 a44 a45 

a15 a25 a35 a45 a55 

Then, from Appendices D and E2 of Verrill et al. (2012a) we have 

∂2 ln(f (x, w)) 1 
a11 = −E = (C.42)

∂μ2 σ 2(1 − ρ2) 

∂2 ln(f (x, w)) 2 − ρ2 

a22 = −E = (C.43)
∂σ 2 σ 2(1 − ρ2) 
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2972 Verrill et al. 

∂2 ln(f (x,w)) (1 + ρ2) 
a33 = −E = (C.44)

∂ρ2 (1 − ρ2)2 

2
∂2 ln(f (x,w)) ρ2 ∂y β2 

a44 = −E = E + , (C.45)
∂γ 2 1 − ρ2 ∂γ  γ 2

where y is given by (11) and 

∂y √ 
β 2= 2π × βγ β−1 × w × exp(−(γw)β) × exp(y /2)

∂γ  

ρ2 2
∂2 ln(f (x,w)) ∂y 1 

a55 = −E = E + (C.46)
∂β2 1 − ρ2 ∂β β2 

+E 
(
(ln(w))2

) + 
2 

E (ln(w)) 
β 

2 ln(γ )+2 ln(γ )E (ln(w)) +
β 

+ (ln(γ ))2 , 

where 

∂y √ 
2= 2π × (γw)β ln(γw) × exp(−(γw)β) × exp(y /2)

∂β
 

∂2 ln(f (x,w))
 
a12 = −E = 0 (C.47) 

∂μ∂σ  

∂2 ln(f (x,w)) 
a13 = −E = 0 (C.48) 

∂μ∂ρ  

∂2 ln(f (x,w)) ρ ∂y 1 
a14 = −E = E (C.49)

∂μ∂γ  1 − ρ2 ∂γ  σ 

∂2 ln(f (x,w)) ρ ∂y 1 
a15 = −E = E (C.50)

∂μ∂β  1 − ρ2 ∂β σ 

∂2 ln(f (x,w)) −ρ 
a23 = −E = (C.51)

∂σ∂ρ  σ (1 − ρ2) 

∂2 ln(f (x,w)) ρ2 ∂y 
a24 = −E = E y (C.52)

∂σ∂γ  σ (1 − ρ2) ∂γ  

∂2 ln(f (x,w)) ρ2 ∂y 
a25 = −E = E y (C.53)

∂σ∂β  σ (1 − ρ2) ∂β 

∂2 ln(f (x,w)) ρ ∂y 
a34 = −E = E y (C.54)

∂ρ∂γ 1 − ρ2 ∂γ  
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2973 Efficient Estimation of a Bivariate Gaussian-Weibull 

∂2 ln(f (x, w)) ρ ∂y 
a35 = −E = E y (C.55)

∂ρ∂β 1 − ρ2 ∂β 

∂2 ln(f (x, w)) ρ2 ∂y ∂y β 
a45 = −E = E + E (log(w))

∂γ  ∂β  1 − ρ2 ∂γ ∂β γ 

1 β ln(γ )+ + (C.56)
γ γ 

We know that the expectations above involving partial derivatives of y exist and are fi
nite by work done in Appendix H of Verrill et al. (2012a). To calculate approximations (
to most of the expectations above—E((∂y/∂γ )2), E (∂y/∂β)2

)
, E ((∂y/∂γ ) (∂y/∂β)), 

E (y (∂y/∂γ )), E (y (∂y/∂β)), E (∂y/∂γ ), and E (∂y/∂β)—one can use, for example, the (
QUADPACK numerical integration routine dqags. E (ln(w))2

) 
and E (ln(w)) are related 

to the Euler–Mascheroni constant (see Eqs. (17)–(19) of Verrill et al. (2012a)) and can be 
calculated from it. 

Appendix D—Positive Definite Information Matrix 

To invoke Lehmann’s Theorem 4.2, we need to establish that the information matrix is 
positive definite. In Appendices E2 and E3 of Verrill et al. (2012a), we establish that 

∂2 ln(f (x, w)) ∂f/∂θi ∂f/∂θj
E − = E × (D.57)

∂θi∂θj f f 

Thus, 

5 5 LL ∂f/∂θi ∂f/∂θjaT I(θ )a = aiaj E ×
f f 

i=1 j=1 ⎛ ⎞
25 L ∂f/∂θi ⎝ ⎠ = E ai ≥ 0. (D.58)

f 
i=1 

To complete the proof that I(θ ) is positive definite we need to show that 

5 L ∂f/∂θi 
ai = 0 a.e. (D.59) 

f 
i=1 

implies a = 0. From result (172) of Verrill et al. (2012a) we have ( )5 x−μ L ∂f/∂θi 1 − ρy
σ ai = a1 × (D.60)

f σ 1 − ρ2 
i=1 ( )

x−μ−1 1 σ − ρy x − μ + a2 × + 
σ σ 1 − ρ2 σ ( ) ( )2x−μ x−μ

ρ − ρy y − ρy ρ
σ σ+ a3 × + −

1 − ρ2 1 − ρ2 (1 − ρ2)2 

http:AppendixHofVerrilletal.(2012a).To
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2974	 Verrill et al. 

β	 x − μ ρ ∂yβ+ a4 × − w βγ β−1 + − ρy
γ σ 1 − ρ2 ∂γ  

1 + a5 × ln γ + + ln(w) − (γw)β ln(γw)
β 

x − μ ρ ∂y+ − ρy
σ 1 − ρ2 ∂β 

From result (137) of Verrill et al. (2012a), we have 

∂y β= βγ β−1 × w	 × exp(−(γw)β)/φ(y). (D.61)
∂γ  

From result (138) of Verrill et al. (2012a), we have 

∂y = (γw)β ln(γw) × exp(−(γw)β)/φ(y) (D.62) 
∂β 

Recall that 

y ≡ <−1(1 − exp(−(γw)β) 

Now let E >  0 be given. Then results (59)–(62) imply that given any w0, we can find an 
associated x,w rectangle chosen so that (x − μ)/σ − ρy is small in the rectangle such that 

� −1 ρ 
a2 × + a3 ×	 (D.63)

σ	 1 − ρ2
 

β
 β+ a4 × − w βγ β−1 

γ 

1	 � + a5 × ln γ + + ln(w) − (γw)β ln(γw) < E/2 
β 

for some (x,w) in the rectangle. 
A suitable rectangle can be written as [x0 − δ, x0 + δ] × [w0 − δ,w0 + δ] where δ can 

be made arbitrarily small, (x0 − μ)/σ − ρy0 = 0, and y0 = <−1(1 − exp(−(γw0)β). By 
5 ∂f/∂θi(59), there must be some (x,w) in the rectangle for which ai = 0.i=1 f 

Taking w0 large enough 

|a4 + a5K ln(γw)| < E 	  (D.64) 

for K fixed and positive and w arbitrarily large. As E was arbitrary, this implies that a4 and 
a5 equal 0. 

Now, given results (59) and (60) and the fact that a4 = a5 = 0, given any E >  0, we 
can find an x,w region of positive measure (chosen so that y is large and (x − μ)/σ is 
bounded) such that (taking y large enough) 

� −ρ ρ3 � 
a3 ×	 − < E.  (D.65)

1 − ρ2 (1 − ρ2)2 
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2975 Efficient Estimation of a Bivariate Gaussian-Weibull 

This implies that a3 = 0 or  ρ = 0. If ρ = 0, then (given that a4 = a5 = 0) 

L 5 
∂f/∂θi 1 x − μ −1 1 x − μ 2 

ai = a1 × + a2 × + 
f σ σ σ σ σ 

i=1 

x − μ + a3 × y . (D.66)
σ 

Given results (59) and (66), given any E >  0, we can find an x,w region of positive measure 
(chosen so that y is large and (x − μ)/σ is bounded above and bounded below away from 
0) such that (taking y large enough) 

� x − μ � 
a3 × < E  

σ 

for arbitrary (x − μ)/σ in the bounded region. Thus, a3 = 0. 
Next, given results (59) and (60) and the fact that a3 = a4 = a5 = 0, given any E >  0, 

we can find an x,w region of positive measure (chosen so that (x − μ)/σ is large and y is 
bounded) such that (letting x get large enough) 

� �a2 × 
1 

� � � < E.  

� 
(D.11)

σ (1 − ρ2) 

This implies that a2 = 0. 
Finally, results (59) and (60) and the fact that a2 = a3 = a4 = a5 = 0 imply that a1 = 0, 

or a = 0 as needed. 
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