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ABSTRACT

Two important wood properties are the modulus of elasticity (MOE) and the modulus of

rupture (MOR). In the past, the statistical distribution of the MOE has often been modeled as

Gaussian, and that of the MOR as lognormal or as a two- or three-parameter Weibull

distribution. It is well known that MOE and MOR are positively correlated. To model the

simultaneous behavior of MOE and MOR for the purposes of wood system reliability

calculations, we introduce a bivariate Gaussian–Weibull distribution and the associated

univariate pseudo-truncated Weibull (PTW). We note that theoretical arguments suggest

that the strength distributions of grades of lumber are likely to be PTW rather than Weibull.

We describe a Web-based program that fits bivariate Gaussian–Weibull data sets (and thus

fits PTW distributions to MOR data). We present data that demonstrate that strength

distributions of visual grades of lumber are not Weibull and do display at least some of the

characteristics of PTW data. Finally, we demonstrate via simulation that if we fit a Weibull

distribution to PTW data (as is often done), we can obtain very poor estimates of

probabilities of failure.
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Introduction

Two important wood properties are the modulus of elasticity

(MOE) and the modulus of rupture (MOR). In the past, the sta-

tistical distribution of the MOE has often been modeled as

Gaussian, and that of MOR as lognormal or as a two- or three-

parameter Weibull distribution (see, for example, ASTM D2915

[1] and Refs 2 and 3).

Design engineers must ensure that the stresses to which

wood systems are subjected rarely exceed the systems’ strengths.

To this end, ASTM D2915 [1], ASTM D245 [4], and ASTM

D1990 [5] describe the manner in which “allowable properties”

are assigned to populations of structural lumber. In essence, an

allowable strength property is calculated by estimating a fifth

percentile of a population (actually a 95 % content, one-sided

lower 75 % tolerance bound) and then dividing that value by

duration of load and safety factors. The intent is that the popu-

lation can be used only in applications in which the stress does

not exceed the allowable property. Of course there are stochastic

issues associated with variable loads, uncertainty in estimation,

and the division of a percentile with no consideration of popula-

tion variability. Thus, this is not an ideal approach for ensuring

the reliability of wood systems. However, it is the currently

codified approach.

To apply this approach, one must obtain estimates of the

fifth percentiles of MOR distributions. Currently, one method

for obtaining estimates involves fitting a two-parameter Wei-

bull distribution to a sample of MORs. To obtain this fit, ei-

ther a maximum likelihood approach or a linear regression

approach based on order statistics is permitted under ASTM

D5457 [6].

These methods are often applied to populations that are

not really distributed as two-parameter Weibulls. For example,

in the United States, construction-grade 2 by 4 boards are often

classified into visual categories (e.g., Select Structural, No. 1,

No. 2) or into machine stress-rated (MSR) grades. In the case of

MSR grades, MOE boundaries are selected, the MOE is meas-

ured non-destructively, and a piece of lumber is placed into a

particular MSR category (“bin” in this paper) if its measured

MOE lies between the MOE boundaries associated with that

category. Because MOE and MOR are correlated, bins with

higher MOE boundaries also tend to contain lumber popula-

tions with higher MOR values. The fifth percentiles of these

MOR populations are sometimes estimated by fitting Weibull

distributions to these populations. Upon reflection, statisticians

and reliability engineers should recognize that this poses a

problem. Even if the full population of lumber strengths were

distributed as a Weibull, we would not expect that subpopula-

tions formed on the basis of visual grades or MOE binning

would continue to be distributed as Weibulls.

In fact, such a subpopulation is not distributed as a Wei-

bull. If the full joint MOE–MOR population were distributed

as a bivariate Gaussian–Weibull, the MOR subpopulation pro-

duced by MOE binning would be distributed as a univariate

“pseudo-truncated Weibull” (PTW). In Ref 7, we obtained the

distribution of a PTW and showed how to obtain estimates of

its parameters and its quantiles by fitting a bivariate

Gaussian–Weibull to the full MOE–MOR distribution. In the

second section of this paper, we provide the density of our

version of a bivariate Gaussian–Weibull and the densities of

the associated truncated bivariate Gaussian–Weibull and univari-

ate PTW.

In the third section we describe a Web-based

computer program that we have developed that fits bivariate

Gaussian–Weibull distributions to bivariate data. In the fourth

section we demonstrate that real MOR data do not follow a

two-parameter Weibull distribution and do have at least some

of the characteristics that we would expect from PTW data.

Finally, in the fifth section we present results from a simulation

in which we investigated how poorly we can do in estimating

failure probabilities when we fit Weibull distributions to PTW

data.

We note that the bivariate Gaussian–Weibull distribution

has uses other than as a generator of PTW distributions. For

example, engineers who are interested in simulating the per-

formance of wood systems must begin with a model for the

joint stiffness and strength distribution of the members of the

system (see, for example, Refs 8–10). Provided that we are con-

sidering the full population, a Gaussian–Weibull is one possible

model for this joint distribution.

Prior to the publication of Ref 7, bivariate Gaussian–

Weibull distributions had not yet appeared in the literature.

However, bivariate Weibull distributions have previously been

investigated (see, for example, Refs 11–23).

We note that the bivariate Gaussian–Weibull distribu-

tion that we discuss in the current paper is not the only

possible bivariate distribution with Gaussian and Weibull

marginals. In essence, we begin with a “Gaussian copula,” a

bivariate uniform distribution generated by starting with a

bivariate normal distribution and then applying normal cu-

mulative distribution functions to its marginals. (Reference 7

follows Ref 24 in its development. References 25 and 26

introduced this technique in a lumber context.) However,

there is a large body of literature on alternative copulas

(multivariate distributions with uniform marginals); see, for

example, Refs 27 and 28. These alternatives would lead

to alternative bivariate Gaussian–Weibulls. Ultimately, the

test of the usefulness of our proposed version of a

Gaussian–Weibull for a particular application will depend

on the match between the theoretical distribution and data.

Still, we believe that the analysis of our proposed version in

the current paper and in Refs 7, 29, and 30 represents a use-

ful step in the construction and evaluation of bivariate

Gaussian–Weibull distributions.
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Densities

A BIVARIATE GAUSSIAN–WEIBULL DISTRIBUTION

The density function of the version of a bivariate Gaussian–

Weibull distribution introduced in Ref 7 is

gaussweibðx;w; l;r;q; c;bÞ

� cbbwb�1 exp �ðcwÞb
� �

� 1ffiffiffiffiffi
2p
p 1

r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
� exp �

x�l
r � qy

� �2
2ð1� q2Þ

 !(1)

where:

y ¼ U�1 1� exp �ðc� wÞb
� �� �

U is the N(0,1) cumulative distribution function, and l, r, q, c,

and b are the parameters of the distribution.

In Fig. 1 we provide a contour plot of the bivariate

Gaussian–Weibull distribution for a coefficient of variation

(CV) equal to 0.15 and a “generating correlation” (q) equal to

0.7. (In Appendix B of Ref 31, we report simulations that indi-

cate that the sample correlation between the marginal Gaussian

and Weibull random variables will be very close to the generat-

ing correlation.) Additional plots are provided in Ref 7. Note in

these plots that as the CV declines from 0.35 to 0.25 to 0.15 (as

the Weibull shape parameter increases from 3.13 to 4.54 to

7.91), the density contours become much less elliptical. That is,

the distribution diverges from bivariate normal. We would

expect this, as a Weibull distribution is “like a normal” for shape

near 3.6 (skewness equals 0.00056, excess kurtosis equals

�0.28), and a Weibull becomes skewed to the left and lepto-

kurtic as the shape increases.

A TRUNCATED BIVARIATE GAUSSIAN–WEIBULL

DISTRIBUTION

In wood engineering applications, it is often the case that we do

not have data from a full bivariate Gaussian–Weibull distribu-

tion. Instead, we have data from the subpopulation that is

formed by considering lumber whose MOE values lie between

two pre-determined limits, c1 and cu (that is, we have MSR lum-

ber). It is clear that the joint density in this case is

gaussweibðx;w; l;r;q; c;bÞ
.

U
cu � l

r

� �
� U

c1 � l
r

� �� �
(2)

for x between c1 and cu, and 0 elsewhere.

THE PSEUDO-TRUNCATEDWEIBULL DISTRIBUTION

In Ref 7 we show that the density function for a PTW (based on

a bivariate Gaussian–Weibull) is

fPTWðwÞ ¼ cbbwb�1 exp �ðcwÞb
� �

� U ðcu � lÞ= r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p� �
� qy=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p� ��
� U ðc1 � lÞ= r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p� �
� qy=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p� ��.
U

cu � l
r

� �
� U

c1 � l
r

� �� �
(3)

where
y ¼ U�1 1� exp �ðcwÞb

� �� �
Thus, as we would expect, for q ¼ 0, the PTW density is simply

the Weibull density, cbbwb�1 expð�ðcwÞbÞ.
In Appendix K of Ref 7, we show that as q! 1, the density

of a PTW distribution converges to the density of a truncated

Weibull distribution.

Note that the PTW density in Eq 3 nominally involves

seven parameters (l;r; q;b; c; c1; and cu). In fact, however, it is

a five-parameter density. To see this, we define

p1 � U
c1 � l

r

� �

and

pu � U
cu � l

r

� �

so that pu � p1 is the probability that the Gaussian variable lies

between the truncation limits c1 and cu. Then we can replace

ðc1 � lÞ=r and ðcu � lÞ=r in Eq 3 with U�1ðp1Þ and U�1ðpuÞ,
and we see that the density is actually a function of the five pa-

rameters q;b; c; p1; and pu. Further, in some practical situations,

FIG. 1 Contour plot of the bivariate Gaussian–Weibull density for Gaussian

and Weibull coefficients of variation equal to 0.15 and a generating

correlation of 0.7.
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we can take p1 and pu as known. For example, historical data

might permit us to conclude that for No. 2 lumber from a par-

ticular mill or region, p1 ¼ 0:4 and pu ¼ 0:8 (i.e., 40 % of the

lumber produced by the mill or region is graded as poorer than

No. 2, and 20 % of the lumber is graded as better than No. 2).

This would simplify the task of fitting a PTW distribution to

MOR data in the absence of correlated MOE data or truncation

bounds on the MOE data (as would be available for MSR data).

Figures 2 and 3 are (one version of) Weibull probability

plots of PTW data. We plotted the ordered data from a PTW

sample against the predicted ordered data from the best Weibull

fit to the data. If the data really were Weibull, then the plots

would be approximately linear. In Fig. 2, the generating X;Y

correlation was 0, so the data actually were Weibull and the plot

is approximately linear. In Fig. 3, the generating X;Y correlation

was 0.99, so the data were “far from Weibull” and the plot is

quite nonlinear. For both data sets, the Weibull coefficient of

variation was 0.25 and c1 and cu corresponded to the 0.2 and

0.8 quantiles of the Gaussian distribution.

In Appendix L of Ref 7, we formally establish that for

q 6¼ 0, PTW distributions are not Weibull distributions.

Web Program to Estimate the

Parameters of a Bivariate

Gaussian–Weibull

Based on the theory in Ref 7, we have developed a computer

program that obtains asymptotically efficient estimates of the

parameters of a bivariate Gaussian–Weibull distribution. The

program also performs Anderson–Darling and Cramér–von

Mises Gaussian and Weibull goodness-of-fit tests of the mar-

ginal distributions; returns nominal 75 %, 90 %, 95 %, and

99 % confidence intervals on the parameters; and performs

simulations to obtain estimates of the actual coverages of the

confidence intervals. The program’s user interface is

described in Section 6 of Ref 29. Algorithmic details of the

program are provided in Appendix B of Ref 29. The Web

program can be run at http://www1.fpl.fs.fed.us/fit_gauss_

weib.html. The code for a standalone FORTRAN program

that performs these same functions can be found at

http://www1.fpl.fs.fed.us/fit_gauss_weib_ code.html.

We are currently developing software that fits truncated

(on the Gaussian) bivariate Gaussian–Weibull data (that is,

MSR data). It has performed well in simulations and will be

described in a technical report.

We have also investigated software that fits pure PTW

data. As explained in the section “The Pseudo-truncated

Weibull Distribution,” these are univariate data (for exam-

ple, data in which only the MOR is available) that are para-

meterized by l, r, q, p1, and pu. We have found that it is

numerically difficult to obtain good estimates in this case,

especially when p1 does not approach 0 and pu does not

approach 1 (as in the case of No. 2 lumber). However, we

have been having some success when subsets of the

parameters (e.g., p1 and pu) can be taken as known. This

work continues.

FIG. 2 Weibull probability plot of a pseudo-truncated Weibull distribution

with generating coefficient of variation equal to 0.25 and generating

correlation equal to 0.0. The straight line is the ordinate-equals-

abscissa line.

FIG. 3 Weibull probability plot of a pseudo-truncated Weibull distribution

with generating coefficient of variation equal to 0.25 and generating

correlation equal to 0.99. The straight line is the ordinate-equals-

abscissa line.
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Empirically, Are Strength

Populations of “Bins” Pseudo-

truncated Weibull Rather than

Weibull?

We do have evidence that strength populations of bins are not

Weibull. For example, in Table 1 we list 19 cells of Select Struc-

tural and No. 2 data that were obtained in the Ingrade Program

(Refs 2 and 3). In this table, DF, SP, and HF denote, respec-

tively, Douglas Fir, Southern Pine, and Hem Fir. We also pres-

ent significance levels from Cramér–von Mises (CVM) and

Anderson–Darling (AD) tests of goodness of fit (see, for exam-

ple, Ref 32) of a two-parameter Weibull distribution. In most

cases, a two-parameter Weibull distribution is rejected by both

tests.

We also produced Weibull probability plots of the 19 data

sets. Figure 4 is an example of these plots. (In our “probability

plots,” we plot ordered data versus predicted ordered data.)

Note the short left tail and the concave down right tail. Sixteen

of the 19 plots had a short left tail. None had a long left tail.

Thirteen of the 19 plots had a concave down right tail. Only one

had a concave up right tail. (This appearance conforms with

that of Weibull probability plots of generated PTW data; see,

for example, Fig. 3.)

Thus, as expected from the theoretical treatment in Ref 7,

we can conclude that strength populations created via visual

grading of lumber are not Weibull distributed. However, do they

have our PTW distribution? Unfortunately, it is not currently

possible to answer this question. It has not been the practice to

collect full population data. Instead, lumber has been sorted

into, for example, visual categories (e.g., Select Structural, No. 1,

No. 2), and for a given population, measurements have been

made on only some of these categories. We have not been able

to obtain paired MOE and MOR values for a random sample

from a full population of lumber.

Also, we cannot treat such data as bivariate Gaussian–

Weibull data that have had their Gaussian component trun-

cated. In contrast to MSR lumber, visually graded lumber is

binned according to (informed) judgments made by a human

grader. There is, perhaps, an implicit normally distributed visual

variable by which the material has been binned. However, we

do not have values for that variable.

We are working to obtain paired MOE/MOR values for

either full populations or MSR lumber. This should permit us to

perform goodness-of-fit tests.

However, regardless of whether our particular form of a

bivariate Gaussian–Weibull distribution is optimal for stiffness-

strength lumber data, we believe that the analysis in the next

section should lead to caution in the use of the Weibull distribu-

tion to model PTW data.

If Strength Populations Are

Pseudo-truncated Weibull Rather

than Weibull, Does It Matter?

We have discussed how the joint distribution of the full popula-

tion of wood stiffness and strength can be modeled as bivariate

Gaussian–Weibull. As noted in the Introduction, a bivariate

Gaussian–Weibull MOE–MOR joint distribution would lead to

MSR bins and visual grades of lumber that have PTW strength

TABLE 1 Cramér–von Mises and Anderson–Darling goodness-of-fit

tests for ingrade data [2,3].

Goodness-of-fit p Value

Species Lumber Size Gradea Sample Size CVM AD

DF 2� 4 SS 414 0.10 0.05

DF 2� 8 SS 493 NS NS

DF 2� 10 SS 414 NS NS

DF 2� 4 2 386 0.25 0.10

DF 2� 8 2 1964 0.01 0.01

DF 2� 10 2 388 0.01 0.01

HF 2� 4 SS 428 0.05 0.01

HF 2� 8 SS 375 0.05 0.05

HF 2� 10 SS 368 0.10 0.05

HF 2� 4 2 406 0.01 0.01

HF 2� 8 2 372 0.01 0.01

HF 2� 10 2 361 0.01 0.01

SP 2� 4 SS 413 0.05 0.025

SP 2� 8 SS 626 0.05 0.025

SP 2� 10 SS 413 0.01 0.01

SP 2� 4 2 413 0.01 0.01

SP 2� 6 2 413 0.01 0.01

SP 2� 8 2 1367 0.01 0.01

SP 2� 10 2 412 0.10 0.25

aSS, select structural.

FIG. 4 Weibull probability plot for Hem Fir 2�4, number 2 lumber.
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distributions. It is often current practice to fit Weibull distribu-

tions to these subpopulations. The fits have been based on both

regression and maximum likelihood approaches, and on cen-

sored and uncensored data [6]. (The censoring has been justi-

fied by wood scientists by the argument that they are only

concerned about lower tail behavior and by their belief that they

have seen “better fits” to lower tails via censored Weibull fits

than full Weibull fits; see, for example, Section X.1.1 of Ref 6.

For statisticians and reliability engineers, this rings alarm bells.

Throwing away data increases variance, and using the censored

Weibull, in essence, as an empirical “spline” for the near left tail

does not give any assurance that it will predict well in the far

tail.) “Allowable bending strengths” are then calculated (essen-

tially) as fifth percentiles divided by a 2.1 duration of load and

safety factor. We were interested in the effect of these practices

on the estimation of probabilities of failure when stresses are

equal to allowable bending strengths.

We conducted simulations to investigate this question. (A

listing of the simulation program can be found at http://

www1.fpl.fs.fed.us/bivar3.html; see the pfsim4.f link.)

For four generating correlations (0.50, 0.60, 0.70, and 0.80)

and three CV values (20, 30, and 40), we generated 10 000

bivariate Gaussian–Weibull data sets. To simulate number 2

lumber, these data sets were generated so that each yielded 400

specimens with a Gaussian value that lay between the 40th and

80th percentiles of the Gaussian distribution. This required

approximately 1000 bivariate Gaussian–Weibull pairs in each

data set. For each of these 10 000 data sets, we calculated Wei-

bull regression and maximum likelihood fits based on all 400

simulated pseudo-truncated MOR data values (W/Reg/All and

W/MLE/All) and censored data fits based on the bottom 20 %

(W/Reg/20 and W/MLE/20) and bottom 10 % (W/Reg/10 and

W/MLE/10) of the values. We also obtained a bivariate

Gaussian–Weibull “maximum likelihood” fit (a purely numeric

optimization of density [3]) to the 400 data pairs binned by the

Gaussian value (PTW cens), a bivariate Gaussian–Weibull fit

(based on Theorem 1 in [7]) to the first (not the lowest) 400 of

the approximately 1000 unbinned Gaussian–Weibull values

(PTW 400), and a bivariate Gaussian–Weibull fit of all of the

approximately 1000 unbinned Gaussian–Weibull values (PTW

1000).

Each of these fits yielded an allowable bending strength. In

each case we calculated the predicted probability that the MOR

would lie beneath the allowable bending strength. This value

was calculated from the fitted distribution. In each case we also

calculated the true probability that the MOR would lie beneath

the allowable bending strength. This value was calculated from

the (known) generating bivariate Gaussian–Weibull. Informa-

tion about the ratios of the true “probabilities of failure” (proba-

bility that a specimen has strength lower than the allowable

bending strength) to the estimated probabilities of failure is pre-

sented in Tables 6 through 9 of Ref 30. In Table 2 of the current

paper, we provide a condensed version of a portion of Ref 30’s

Table 8. This condensed version only contains results for a gen-

erating correlation equal to 0.70 and a CV equal to 0.30.

In column 1 of Table 2, we describe the type of fit. These

values correspond to the nine fitting techniques described

above. In column 2 we provide the median of the 10 000

ratios of true to estimated probabilities of failure. A value less

than 1 indicates an approach that is conservative at the

median. However, as can be seen from the remainder of the

table, the median represents an insufficient summary. The

remaining columns list the fraction of the time for which a

particular technique had ratios of true to estimated

TABLE 2 Frequencies for pF;true=pF;est for a bivariate Gaussian–Weibull distribution with generating correlation¼0.70 and CV¼0.30.

pF Ratio Frequencies

Fit Median pF Ratio ½0; 0:02� ð0:02; 0:2� ð0:2; 0:5� ð0:5; 2Þ ½2; 5Þ ½5; 50Þ ½50;1Þ

W/Reg/All 0.41 0.0000 0.0261a,b 0.6829a,b 0.2910a,b 0.0000 0.0000 0.0000

W/Reg/20 0.73 0.0000 0.0364a,b 0.2766a,b 0.5670a,b 0.1018b 0.0182b 0.0000

W/Reg/10 0.79 0.0000 0.0548a,b 0.2664a,b 0.4771a,b 0.1383b 0.0617a,b 0.0017a,b

W/MLE/All 0.27 0.0000 0.1854a,b 0.7907a,b 0.0239a,b 0.0000 0.0000 0.0000

W/MLE/20 0.74 0.0000 0.0144a,b 0.2540a,b 0.6560a,b 0.0697b 0.0059b 0.0000

W/MLE/10 0.92 0.0001a,b 0.0187a,b 0.2069a,b 0.5709a,b 0.1549a,b 0.0479a,b 0.0006a,b

PTW cens 1.04 0.0000 0.0005b 0.1047b 0.7051b 0.1536b 0.0360b 0.0001b

PTW 400 1.03 0.0000 0.0000 0.0343 0.9090 0.0567 0.0000 0.0000

PTW 1000 1.01 0.0000 0.0000 0.0023 0.9940 0.0037 0.0000 0.0000

Notes: pF denotes the probability of failure when a stress equal to the allowable bending strength is applied. “W” in the “Fit” column indicates that the fit was
made on the basis of an (incorrect) Weibull assumption. “PTW” indicates that the fit was made on the basis of a (correct) PTW (or bivariate Gaussian–Weibull)
assumption.
a“Worse” behavior than PTW cens behavior.
b“Worse” behavior than PTW 400 behavior.
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probabilities of failure that lay in the intervals ½0; 0:02�,
ð0:02; 0:2�, ð0:2; 0:5�, ð0:5; 2Þ, ½2; 5Þ, ½5; 50Þ, and ½50;1Þ.
Obviously, we could have chosen other intervals. However,

our main points are clear from the table(s):

1. The Weibull fits (regression and maximum likelihood)
tend to be overly conservative. That is, true probabilities
of failure can be much less than estimated probabilities of
failure.

2. At the same time, the censored (20 % and 10 %) Weibull
fits can be much more variable than the correct bivariate
Gaussian–Weibull fits, with the result that they can occa-
sionally yield highly nonconservative fits. That is, the
actual probabilities of failure can be much greater than
the estimated probabilities of failure.

3. If the joint MOE/MOR distribution is truly bivariate
Gaussian–Weibull, we can obtain better estimates of
the probability of failure by taking the same number of
specimens from the full distribution than by restricting
ourselves to binned values. (Compare the PTW 400 and
PTW cens results.)

Summary

In the context of wood strength modeling and reliability calcu-

lations, we have introduced a bivariate Gaussian–Weibull distri-

bution and the associated univariate pseudo-truncated Weibull

(PTW) distribution. We have described a Web-based program

that fits bivariate Gaussian–Weibull data sets (and thus permits

estimation of PTW distributions, provided c1 and cu are known

and bivariate Gaussian–Weibull data are available). In Ref 7, we

demonstrate theoretically that if full MOE–MOR populations

have bivariate Gaussian–Weibull distributions, then the MOR

distributions of MSR grades of lumber will be PTW, and the

MOR distributions of visual grades of lumber will be at least

approximately PTW. In the current paper, we have demon-

strated empirically that the MOR distributions of visual grades

of lumber are not Weibull and that they have at least some of

the characteristics of PTW populations. Finally, we have dem-

onstrated that, as one would expect, if we fit Weibull distribu-

tions to PTW data, we can obtain very poor estimates of

probabilities of failure. These results suggest that ASTM stand-

ards for estimating the allowable strength properties of lumber

grades should not permit a Weibull assumption.

We note that in this paper, we are arguing not so much for

a PTW model for strength data as against a Weibull one. A

reviewer remarked that they had seen evidence that strength

distributions associated with lumber grades might need to be

modeled as mixtures of parametric distributions; we agree that

this is likely to be true. In this case, the strength distribution of

a grade of lumber might be modeled as a mixture of PTW dis-

tributions, and there would still be a “thinning of the tail” due

to pseudo-truncation.
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