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Extracellular peroxide generation, a key component of oxidative lignocellulose degradation, has been
attributed to various enzymes including the copper radical oxidases. Encoded by a family of structurally
related sequences, the genes are widely distributed among wood decay fungi including three recently
completed polypore genomes. In all cases, core catalytic residues are conserved, but five subfamilies
are recognized. Glyoxal oxidase, the most intensively studied representative, has been shown physiolog-
ically connected to lignin peroxidase. Relatively little is known about structure–function relationships
among more recently discovered copper radical oxidases. Nevertheless, differences in substrate prefer-
ences have been observed in one case and the proteins have been detected in filtrates of various
wood-grown cultures. Such diversity may reflect adaptations to host cell wall composition and changing
environmental conditions.

Published by Elsevier Inc.
1. Introduction

Critical components of the carbon cycle, wood decomposing
fungi have received increased attention for their potential in the
production of biofuels and other bioprocesses. Most wood-decay-
ing fungi are in the Agaricomycetes (Basidiomycota), although
some species also occur in other groups of Basidiomycota and
Ascomycota (Gilbertson, 1980; Nilsson et al., 1989; Shary et al.,
2007; Wells and Bandoni, 2001). Two broad categories of wood
decay chemistries are known in Agaricomycetes; white rot and
brown rot. White rot fungi are uniquely capable of efficiently
degrading and mineralizing all components of plant cell walls,
including the highly recalcitrant lignin fraction. In contrast, brown
rot fungi rapidly depolymerize cellulose but do not appreciably
remove lignin, which remains as a polymeric residue (Blanchette,
1995; Eriksson et al., 1990; Niemenmaa et al., 2007; Worrall
et al., 1997; Yelle et al., 2008). Resistant to further decay, brown
rot residues contribute to the carbon pool in humic soils, particu-
larly in conifer-dominated ecosystems. Evidence suggests that
white rot is plesiomorphic in Agaricomycetes and that brown rot
has evolved repeatedly (Floudas et al., 2012; Hibbett and
Donoghue, 2001).

As described below, extracellular peroxide production plays an
essential role in white rot and brown rot decay. Copper radical oxi-
dases (CROs), the main focus of this review, likely fulfills this piv-
otal role.

2. Brown rot mechanisms

White and brown rot wood decay are complex and incom-
pletely understood processes that have been intensively studied
in the Polyporales Phanerochaete chrysosporium and Postia placenta,
respectively. Other model white rot fungi include the polypores
Ceriporiopsis subvermispora, Bjerkandera adusta, Trametes versicolor
and the agaric Pleurotus ostreatus. The physiology of brown rot
decay by Gloeophyllum trabeum, a member of the Gloeophyllales,
has also received considerable attention.

Limited porosity is central to understand the mechanisms of
wood degradation. Simply put, most enzymes are too large to pen-
etrate sound, intact wood (Blanchette et al., 1997; Cowling, 1961;
Flournoy et al., 1993; Srebotnik et al., 1988b; Srebotnik and
Messner, 1991). Accordingly it has been proposed that enzyme-
generated oxidizing species penetrate from the lumens into plant
cell walls. Generated via the Fenton reaction (H2O2 + Fe2+ + H+ ?
H2O + Fe3+ + �OH), hydroxyl radical has been strongly implicated
as a diffusible oxidant in brown rot (Cohen et al., 2002; Xu and
Goodell, 2001), and to a lesser extent, in white rot. Enzymatic sac-
charification of complex lignocellulose substrates is enhanced by
hydroxyl radical pretreatment (Ratto et al., 1997), suggesting that
brown rot involves sequential oxidation and hydrolysis.

The mechanisms controlling extracellular Fenton reactions are
the subject of considerable debate (Baldrian and Valaskova,
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Table 1
Number of genes encoding select oxidoreductases in Agaricomcycete.a

Species Order GLX CRO3-5 CRO6 CRO1 CRO2 LiP MnP VP LAC CDH HTP DYP LPMO
F. pinicola Polyporales 0 1 1 1 1 0 0 0 5 0 4 0 4
W. cocos  Polyporales 0 1 1 1 1 0 0 0 5 0 5 0 2
P. placenta Polyporales 0 1 1 0 1 0 0 0 3 0 5 2 2
D. squalens Polyporales 5 1 1 1 1 0 9 3 11 1 4 1 15
Ganoderma sp. Polyporales 5 1 1 1 1 0 6 2 16 1 3 3 15
T. versicolor Polyporales 5 1 1 1 1 10 13 2 7 1 3 2 18
P. brevispora Polyporales 1 3 1 1 2 5 6 0 8 1 2 3 12
C. subvermispora Polyporales 0 1 1 0 1 0 13 2 7 1 9 0 9
P.carnosa Polyporales 1 2 1 1 1 4 7 0 0 1 3 0 11
P.chrysosporium Polyporales 1 3 1 1 1 10 5 0 0 1 3 0 15
B. adusta Polyporales 1 3 1 1 1 12 6 1 0 1 4 10 28
P. ostreatus Agaricales 4 3 6 1 2 0 5 4 12 1 3 4 29
A. bisporus Agaricales 3 1 1 2 2 0 2 0 12 1 24 0 11
S. commune Agaricales 0 0 1 0 1 0 0 0 2 1 3 0 22
A. delicata Auriculariales 2 1 2 0 3 0 5 0 7 1 16 11 19
S. lacrymans Boletales 0 1 1 0 1 0 0 0 4 2 3 0 5
C. puteana Boletales 0 0 1 1 4 0 0 0 6 1 2 0 10
P. strigosozonata Corticiales 3 1 2 0 3 0 10 0 12 1 8 5 13
G. trabeum Gloeophyllales 0 0 1 0 1 0 0 0 4 1 6 0 4
F. mediterranea Hymenochaetales 0 1 1 1 1 0 16 0 10 1 4 3 13
H. annosum Russulales 0 1 1 1 2 0 8 0 13 1 5 1 10
S. hirsutum Russulales 3 1 1 0 3 0 10 0 15 1 10 2 16

a Limited to published genomes. All are wood decay species, except the compost-degrading button mushroom, Agaricus bisporus (Morin et al., 2012; Ohm et al., 2010).
Sources include: (Floudas et al., 2012) for Auricularia delicata, Dichomitus squales, Fomitiporia mediterranea, Punctularia strigosozonata, Stereum hirsutum, Trametes versicolor;
Coniophora puteana, Fomitopsis pinicola, Gloeophyllum trabeum and Wolfiporia coccos. See (Fernandez-Fueyo et al., 2012a) for Ceriporiopsis subvermispora (Olson et al., 2012) for
Heterobasidion annosum (Martinez et al., 2009) for Postia placenta (Eastwood et al., 2011) for Serpula lacrymans (Ohm et al., 2010) for Schizophyllum commune and (Hori et al.,
2013) for Ganoderma sp., Bjerkandera adusta and Phlebia brevispora. Abbreviations include: LiP, lignin peroxidase; MnP, manganese peroxidase; VP, versatile peroxidase; HTP,
heme thiol peroxidase; DyP, dye-decolorizing peroxidases; LAC, laccase; GLX, glyoxal oxidase; CROs, copper radical oxidases most closely related to those of P. chrysosporium
(Kersten and Cullen, 2013; Vanden Wymelenberg et al., 2006); CDH, cellobiose dehydrogenase; and LPMO, lytic polysaccharide monoxygenases formerly assigned to
glycoside hydrolase family GH61. Gray shading highlights brown rot fungi.
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2008; Goodell, 2003). Substituted hydroquinones are synthesized
by several brown rot fungi and are thought to play a role (Cohen
et al., 2004; Shimokawa et al., 2004). In P. placenta, the genes likely
involved in hydroquinone biosynthesis, transport and reduction
are upregulated in a medium containing ball milled aspen (BMA)
as sole carbon source relative to glucose-containing medium.
P. placenta tyrosinase- and laccase-encoding genes, neither having
a P. chrysosporium ortholog, are also upregulated in BMA medium
(Vanden Wymelenberg et al., 2010). Laccases have been identified
in various white- and brown-rot fungi (Table 1) and may support a
redox system via oxidation of hydroquinones (Gomez-Toribio
et al., 2009; Guillen et al., 1997).
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Fig. 1. GLX substrates. Aldehydes and a-hydroxycarbonyls are substrates for P.
chrysosporium GLX (Kersten and Kirk, 1987). For simplicity, structures are repre-
sented in the unhydrated form.
3. White rot mechanisms

Exclusively identified in white rot fungi, lignin peroxidase (LiP)
and manganese peroxidase (MnP), their biochemistry (Higuchi,
1990; Kirk, 1988; Kirk and Farrell, 1987; Schoemaker and Leisola,
1990) and genetics (Alic and Gold, 1991; Cullen, 1997, 2002;
Cullen and Kersten, 1996; Gold and Alic, 1993; Kersten and
Cullen, 2007; Ruiz-Duenas et al., 2013) have been reviewed. LiP
reactions include Ca–Cb cleavage of propyl side chains of lignin
and lignin models, hydroxylation of benzylic methylene groups,
oxidation of benzyl alcohols to the corresponding aldehydes or
ketones, phenol oxidation, and aromatic cleavage of nonphenolic
lignin model compounds (Hammel et al., 1985; Leisola et al.,
1985; Renganathan and Gold, 1986; Renganathan et al., 1985;
Tien and Kirk, 1984; Umezawa et al., 1986). MnP oxidizes Mn2+ to
Mn3+, using H2O2 as oxidant (Kuwahara et al., 1984; Paszczynski
et al., 1985). Organic acids such as oxalic acid stimulate MnP
activity by stabilizing the Mn3+, and produce diffusible oxidizing
chelates (Glenn et al., 1986; Glenn and Gold, 1985). MnP cleavage
of the dominant non-phenolic structures within lignin may be med-
iated by lipid peroxidation mechanisms (Bao et al., 1994; Gutierrez
et al., 2002; Kapich et al., 1999; Watanabe et al., 2000, 2001).

Designated ‘‘Versatile Peroxidases’’ (VPs), certain peroxidases
oxidize Mn2+ as well as non-phenolic substrates (e.g. veratryl alco-
hol) in the absence of manganese (Camarero et al., 1999; Mester
and Field, 1998). These enzymes typically feature Mn binding res-
idues as well as a conserved Trp involved in the electron transfer
that enables oxidation of non-phenolic compounds.

Deviations from the aforementioned peroxidase classifications
have been observed (Fernandez-Fueyo et al., 2012a; Ruiz-Duenas
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et al., 2011). C. subvermispora protein models #118677 and #99382
were classified as LiP and VP genes, respectively, and the corre-
sponding proteins are capable of oxidizing nonphenolic model
compounds and synthetic lignin. However, the putative VP was
unable to oxidize Mn2+, and both enzymes showed catalytic prop-
erties intermediate between conventional LiPs and MnP
(Fernandez-Fueyo et al., 2012a, 2012b).

Less well studied, but potentially involved in degradation of lig-
nin and organopollutants, are heme thiolate peroxidases (HTPs)
and dye decolorization peroxidases (DyPs) (Hofrichter et al.,
2010; Lundell et al., 2010). HTPs include chloroperoxidases and
peroxygenases, which catalyze a wide range of reactions including
oxidations of various aliphatic and aromatic compounds (Gutierrez
et al., 2011; Ullrich and Hofrichter, 2005). DyPs and putative DyP-
encoding genes have been identified in various fungi, including
white rot species (Table 1). High redox potential DyPs are attribut-
able to the white-rot fungus Auricularia auricula-judae (Liers et al.,
2010).
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4. Peroxide generation

Central to Fenton reactions and to peroxidase catalysis, various
extracellular systems for peroxide generation have been proposed.
CROs (below) have been most intensively studied, but other oxido-
reductases may also be involved.

Cellobiose dehydrogenase (CDH) contains a dehydrogenase
domain and a heme prosthetic group (Hallberg et al., 2000). CDH
oxidizes cellodextrins, mannodextrins and lactose, and suitable
electron acceptors include quinones, phenoxyradicals, and Fe3+.
All known white rot genomes have a single CDH gene, but
brown-rot genomes have none (P. placenta, Fomitopsis pinicola,
Wolfiporia cocos), one (Coniophora puteana, G. trabeum), or two
(Serpula lacrymans) gene copies (Eastwood et al., 2011;
Fernandez-Fueyo et al., 2012a; Floudas et al., 2012). CDH is widely
distributed among fungi (Table 1), but in view of its absence in
F. pinicola, P. placenta, and W. cocos, the precise role remains uncer-
tain (Henriksson et al., 2000; Zamocky et al., 2006). Suggesting an
important role in cellulose degradation, co-expression of CDH and
members of the GH61 family within the carbohydrate-active
enzyme database (Lombard et al., 2014) has been observed. Now
classified as copper-dependent lytic polysaccharide monooxygena-
ses (LPMOs) (Quinlan et al., 2011; Westereng et al., 2011), GH61s
boost cellulose depolymerization by CDH (Harris et al., 2010;
Langston et al., 2011).

Other enzymes implicated in peroxide generation include
methanol oxidase (Daniel et al., 2007), pyranose oxidase (Daniel
et al., 1994), and aryl alcohol oxidases (Hernandez-Ortega et al.,
2012). The latter enzyme is widely distributed in white and brown
rot fungi and is simultaneously expressed with class II peroxidases
in B. adusta and Pleurotus cultures (Camarero et al., 1996;
Hernandez-Ortega et al., 2012). In addition to MnPs, recent mass
spectrometry analysis of C. subvermispora grown on ground wood
identified both aryl alcohol oxidases and CROs (Hori et al., 2014).
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Fig. 2. Active site of P. chrysosporium GLX based on GAO, adapted from (Whittaker
et al., 1999). The active site incorporates amino acid residues from remote regions
of the polypeptide. Tyr135, Tyr377 and His378 derive from the first domain that has
a superbarrel structure (see Fig. 3). The Tyr135 is covalently linked to Cys70 by a
thioether bond. The His471 is derived from the C-terminal domain.
5. Glyoxal oxidase

5.1. Physiological context in P. chrysosporium

Glyoxal oxidase (GLX) was discovered in a search for extracellu-
lar peroxide that would support peroxidase activity in ligninolytic
cultures of P. chrysosporium (Kersten and Kirk, 1987). These cul-
tures were nutrient-nitrogen limited with glucose as carbon
source. No peroxide generating activity was observed in these
cultures with cellobiose, glucose, or xylose as substrates and there-
fore a broader net of possible substrates was cast; the rational was
that if primary wood sugars were not substrates, then a metabolic
product(s) might serve as the electron source for the reduction of
molecular oxygen. Peroxide-generating activities with simple alde-
hyde and hydroxy-carbonyl substrates was observed with culture
fluid (see Fig. 1 for structures).

The non-specificity of the enzyme activities presented a chal-
lenge for the identification of a physiological substrate. Most of
the identified substrates produce bis-derivatives with 2,4-din-
trophenylhydrazine which precipitate from acidic aqueous solu-
tion allowing simple purification and identification by thin layer
chromatography. Hence, bis-derivatives of methylglyoxal and gly-
oxal were identified, but the analytical method presents ambigu-
ity; glycolaldehyde gives the same bis-derivative as glyoxal,
whereas glyceraldehyde, dihydroxyacetone, and acetol give the
same bis-derivative as methylglyoxal. Nevertheless, this provided
a first rapid screening to test whether potential substrates could
be in culture. More specific analytical techniques identified both
glyoxal and methylglyoxal. Accordingly, the enzyme with the
newly discovered activity was named glyoxal oxidase (GLX).
Importantly, the appearance of both GLX and its substrates were
coincident with lignin peroxidase during secondary metabolism
(Kersten and Kirk, 1987).

To elucidate the contributions of the various substrates of GLX in
peroxide production, the steady-state kinetic parameters for GLX
were determined with a lignin peroxidase coupled assay (Kersten,
1990). The second-order rate constants (kcat/Km) indicated that
methylglyoxal was the best substrate, with glyoxal at 3.3% relative
activity. However, the kcat values with the various substrates were
relatively constant but Km values varied widely indicating that rates
of reaction may be controlled at the substrate concentration level.
Furthermore, the second-order rate constants for glycolaldehyde
and glyoxylic acid were better than for glyoxal, suggesting efficient
sequential oxidations (Kersten, 1990). This concept was pursued in
coupled reactions with lignin peroxidase and a b-aryl ether lignin
substructure model compound as peroxidase substrate (Hammel
et al., 1994). Glycolaldehyde is a product from the lignin substruc-
ture and serves as substrate for GLX for sequential reactions (glycol-
aldehyde ? glyoxal ? glyoxylic acid ? oxalate), thus supplying
peroxide that may be recycled to the lignin peroxidase. Yet another
possible source of glyoxal in cultures is the MnP-dependent lipid
peroxidation of linoleic acid, a fungal metabolite (Watanabe et al.,
2001). Carbohydrate fragmentation by hydroxyl radical is also
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likely to supply GLX substrates; abiotic oxidation of sugars and tri-
oses in a Fenton system produces glyoxal (Manini et al., 2006). Both
glyoxal and methylglyoxal have long been recognized as products
of glucose auto-oxidation in the presence of proteins or amino acids
(Thornalley et al., 1999).

A notable feature of native GLX is that it is reversibly inacti-
vated by purification, or even by simple dialysis, as monitored by
oxygen consumption in the absence of a coupled peroxidase
(Kersten, 1990). GLX is reactivated by LiP and veratryl alcohol, a
metabolite synthesized by P. chrysosporium. This modulation of
activities by interaction between oxidase and peroxidase systems
may be physiologically significant, allowing the production of per-
oxide only when a suitable peroxidase substrate is present. The
cloning and heterologous expression of recombinant GLX, rGLX
(Kersten and Cullen, 1993; Kersten et al., 1995) allowed more
detailed studies of the activation and inactivation of rGLX (Kurek
and Kersten, 1995). Results showed that peroxidase substrates of
high redox potential were effective activators, whereas phenolics
inactivated rGLX. Either LiP or horseradish peroxidase (HRP) could
be used in the activation, but only if a suitable high redox potential
peroxidase substrate was included. Lignin itself was an effective
activator in this system.
Fig. 4. Protein model of P. chrysosporium CRO6. The predicted Phyre2 model of
CRO6 indicates an N-terminal domain (blue) with similarity to putative xylan
esterase axe2 of Cellvibrio japonicas, whereas the second (green) and third (red)
domains with the second and third domains of GAO template.
5.2. Catalytic mechanism – similarity to galactose oxidase

The P. chrysosporium GLX is a CRO, or radical copper oxidase
(Whittaker, 2002; Whittaker et al., 1999, 1996), a metalloenzyme
combining two distinct redox centers, one a copper metal ion,
the other a stable protein free radical. Galactose oxidase (GAO)
from Fusarium sp. is the best characterized copper radical oxidase
for which crystal structure (Ito et al., 1994) and detailed biochem-
ical characterizations are reported (see review (Whittaker, 2005)).
Although crystal structure is not available for GLX, spectroscopic
analyses of native and mutant GLX proteins show that the active
sites of GLX and GAO are remarkably similar, despite less than
20% amino acid sequence similarity between proteins (Whittaker
et al., 1999, 1996). However, the two enzymes are distinct in sub-
strate specificity, redox potential, stability of the protein free rad-
ical, and number of domains. The summary here focuses on GLX
and relies heavily on spectroscopic comparisons with GAO,
together with mutational analyses, to determine the catalytic
mechanism and the identification of active-site amino acids
(Whittaker et al., 1999, 1996).

GLX catalyzes the two-electron oxidation of simple aldehydes
and hydroxycarbonyls with the reduction of molecular oxygen to
Fig. 3. Protein model of P. chrysosporium GLX. The PyMOL representation of GLX (Phyre2
(see Fig. 2) in red stick mode. At left is the representation of the two-domain structure.
rotated 90 degrees, thus making Cys70, Tyr135, Tyr377 and His378 more visible. At f
superbarrel providing His471 ligand of the copper protein.
hydrogen peroxide (Whittaker, 2005). Although this is a two-elec-
tron redox reaction, spectroscopic analyses of the active site show
that the catalysis involves two distinct redox centers, and electrons
are transferred one electron at a time.

RCHOþ O2 ! RCO2HþH2O2

The unique active site of P. chrysosporium GLX incorporates
amino acid residues from remote regions of the polypeptide creat-
ing four copper metal binding residues, Tyr135, Tyr377, His378
and His471. Of particular interest, the Tyr135 is covalently linked
to Cys70 by a thioether bond (Fig. 2). Sequence alignments indicate
a histidine overlying this Tyr-Cys dimer in contrast to tryptophan
in GAO, which may strongly contribute to key differences in the
enzymes. The unmodified Tyr377 appears to serve in general base
catalysis, activating the substrate for oxidation (Whittaker et al.,
1999). The Cu(II) enzyme, or resting enzyme, is catalytically inac-
tive. When the enzyme is oxidized by one electron, or the copper
reduced by one electron, the enzyme enters the catalytic cycle
(Whittaker et al., 1999). Therefore, the regulation of GLX activity
by LiP has an explanation on the molecular level, with the oxidiz-
ing intermediates generated by LiP activating resting GLX.
model) is shown in rainbow-spectrum cartoon mode with the active site residues
For clarity, the first domain is also shown alone in the same orientation, and then

ar right is the second domain with the loop that extends down the center of the
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Fig. 5. Relationships between predicted CRO proteins of P. chrysosporium (Phach) and recently sequenced polypores Ganoderma sp. (Gansp), B. adusta (Bjead) and P. brevispora
(Phlbr) (Hori et al., 2013). Clustal W alignments and tree constructions were performed following manual trimming of secretion signals. Bootstrap values (1000 trials) are
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The active sites of GLX and GAO are housed in domains showing
a 7-fold b-barrel structure, or ‘‘super-barrel’’ (Bork and Doolittle,
1994). In GLX, this is the first domain, and provides Cys70,
Tyr135, Tyr377 and His378 to the active site. A second domain caps
the superbarrel providing His471 at the end of a loop extending
down the center of the superbarrel (Whittaker et al., 1999). Here
we illustrate the predicted tertiary structure of GLX in Fig. 3 based
on Phyre2 modeling (Kelley and Sternberg, 2009) with GAO as
template and visualized with PyMOL Molecular Graphics System
software, Version 1.5.0.4 Schrödinger, LLC.
6. Other CROs

Following the initial characterization of the P. chrysosporium
cDNA (Kersten and Cullen, 1993) encoding GLX, genome analyses
identified five subfamilies, all with conserved catalytic residues
(Vanden Wymelenberg et al., 2006). Designated CRO1, CRO2,
CRO3, CRO4, CRO5 and CRO6, the P. chrysosporium genes featured
conserved catalytic residues. Constituting a single, highly con-
served subfamily, CRO3, CRO4 and CRO5 all feature tandem copies
of a highly conserved WSC domain (IPR002889) at their 50 termini,
and the three are clustered within a larger cluster of LiP genes.
Widely distributed in functionally unrelated proteins, the WSC
domain may be involved in carbohydrate binding. A 30 terminus
transmembrane helix in CRO2 is also present in the CRO2 homolog
of the corn smut pathogen, Ustilago maydis glo1. The latter gene
has been linked to filamentous growth and pathogenicity
(Leuthner et al., 2005). Aldehyde substrate preference of P. chrysos-
porium CRO2 and GLX differ substantially (Vanden Wymelenberg
et al., 2006). CRO6 is predicted to have an N-terminal domain pre-
ceding the superbarrel CRO domain (Fig. 4).

The number and family distribution of CROs vary among Agaric-
omycetes, although relationship(s) to ecology and taxa are unclear.
Our analysis of recently sequenced polypores (Ganoderma sp.,
Phlebia brevispora, Bjerkandera adusta) assigns at least one protein
to each family (Fig. 5) with five GLX representatives identified in
Ganoderma sp. (Table 1). Distant linkage was detected between
the Ganoderma sp. GLX genes and for three B. adusta CRO5-like
genes. GLX homologs are lacking from brown rot fungi and, consis-
tent with a role in peroxidase oxidation, found only in genomes
with LiPs and/or MnPs. However, these Class II peroxidases are
present in white rot species C. subvermispora, F. mediterranea and
H. annosum, all of which lack GLX (Table 1). Possibly, other CROs
such as the WSC-containing CRO3–CRO5 compensate by oxidizing
an array of metabolites unique to C. subvermispora, F. mediterranea
and H. annosum. In contrast, the white rot fungus S. commune, lacks
ligninolytic peroxidases and most CROs. In line with this gene com-
plement, S. commune is limited in its ligninolytic ability (Schmidt
and Liese, 1980).

CRO genes are differentially expressed in response to media
composition. Coordinate with ligninolytic peroxidases, GLX tran-
script and extracellular peptides are upregulated in nutrient lim-
ited P. chrysosporium cultures (Vanden Wymelenberg et al.,
2009). Elevated transcript levels of the C. subvermispora cro2 gene
were observed in wood-containing medium, and peptides corre-
sponding to CRO5 were detected in medium using microcrystalline
cellulose as sole carbon source (Fernandez-Fueyo et al., 2012a).
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CRO5 proteins have also been detected in extracellular filtrates of
BMA media inoculated with T. versicolor, A. delicata, and D. squalens
(Floudas et al., 2012), and more recently in Ganoderma sp., P. brev-
ispora and B. adusta cultures supplemented with Wiley mill ground
aspen (Hori et al., 2014). The CRO2 proteins have been identified in
eight white rot genomes and 4 brown rot genomes when the fungi
are grown on BMA. Under these conditions, detection of CRO1 and
CRO6 peptides has been limited to Dacrypinax sp. and A. delicata,
respectively (Floudas et al., 2012). Earlier reports showed that
the substrate preference of P. chrysosporium CRO2 differed sharply
from GLX (Vanden Wymelenberg et al., 2006).
7. Current research and future prospects

A physiological role for GLX can be supported from several lines
of evidence; (1) GLX produces peroxide required by peroxidases,
(2) peroxide-generation by GLX is modulated by peroxidases, and
(3) GLX substrates may be derived from the fragmentation of ligno-
cellulosics, both lignin and carbohydrate components. Together
with transcriptomic and proteomic data, this suggests a role for
GLX in peroxide production for diverse oxidative reactions during
wood decay by Agaricomycetes. The functions of other CROs are
less certain. CRO2 for example, in comparison to GLX, appears
more limited in substrate specificity, preferentially oxidizing gly-
colaldehyde. However, substrate specificity by itself may not be a
good indicator of function for CROs. For example, the canonical
substrate for galactose oxidase (i.e. galactose) is not the best sub-
strate, instead, dihydroxyacetone is preferentially oxidized
(Zancan and Amaral, 1970). Substrate specificity of other CROs is
unknown and points to an area of needed research. Also, predicted
protein structures of CROs indicate probable differences in physio-
logical roles. CRO2 of P. chrysosporium, for example, has a C-termi-
nal transmembrane region, depending on transcript processing,
suggesting a role distinct from that of GLX. The functions of the
N-terminal WSC domains of CROs3-5 remain unclear, and the
homology of the N-terminal domain of CRO6 of Agaricomycetes
suggests an important conserved function. In this context, encour-
aging progress has been made in the development of techniques
for targeted gene replacement (Salame et al., 2013, 2012, 2011)
for the white rot fungus Pleurotus ostreatus. Such genetic ‘tool-
boxes’ may help establish the function of genes encoding copper
radical oxidases.
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