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We examined gene expression patterns in the lignin-degrading fungus Phanerochaete chrysosporium when it colonizes hybrid
poplar (Populus alba � tremula) and syringyl (S)-rich transgenic derivatives. Acombination of microarrays and liquid chroma-
tography-tandem mass spectrometry (LC-MS/MS) allowed detection of a total of 9,959 transcripts and 793 proteins. Compari-
sons of P. chrysosporium transcript abundance in medium containing poplar or glucose as a sole carbon source showed 113 reg-
ulated genes, 11 of which were significantly higher (> 2-fold, P < 0.05) in transgenic line 64 relative to the parental line. Possibly
related to the very large amounts of syringyl (S) units in this transgenic tree (94 mol% S), several oxidoreductases were among
the upregulated genes. Peptides corresponding to a total of 18 oxidoreductases were identified in medium consisting of biomass
from line 64 or 82 (85 mol% S) but not in the parental clone (65 mol% S). These results demonstrate that P. chrysosporium gene
expression patterns are substantially influenced by lignin composition.

Efficient and complete natural degradation of woody plant cell
walls is generally ascribed to certain wood decay basidio-

mycetes. Collectively referred to as white rot fungi, these unique
microbes are capable of degrading all cell wall components, in-
cluding hemicelluloses, cellulose, and the more recalcitrant lignin
(1). Commonly inhabiting woody debris and forest litter, these
fungi play an important role in carbon cycling. To degrade and
fully mineralize cell wall polymers, the model white rot fungus
Phanerochaete chrysosporium employs a complex array of extracel-
lular oxidative and hydrolytic systems (2).

Analysis of the P. chrysosporium genome revealed 177 putative
glycoside hydrolases (3), most of which are likely involved in the
degradation of cellulose or hemicellulose. On the basis of se-
quence comparisons, these enzymes were assigned to 45 glycoside
hydrolase (GH) families (4; http://www.cazy.org/). Beyond GHs,
considerable evidence supports a role for cellobiose dehydro-
genase (CDH) and lytic polysaccharide monooxygenases (LP-
MOs) in the oxidative attack on cellulose and hemicellulose (5–8).
Consistent with this view, elevated transcript levels and proteins
corresponding to various GHs, CDH, and LPMOs have been ob-
served in medium containing microcrystalline cellulose (9–12)
and ground Populus grandidentata (13), Quercus rubra (14–16),
Pinus strobus (17), or Pinus nigra (18).

Woody feedstocks are increasingly viewed as sources for high-
value, low-molecular-weight products (19). However, their con-
version to simple, fermentable carbohydrates remains a formid-
able barrier, and harsh chemical treatments are typically em-
ployed to enhance substrate accessibility and lignin removal. In
recent years, lignin composition in poplar has been modified by
gene misregulation, and, in one case, altered lignin improved the
efficiency of saccharification and fermentation to ethanol (20).
The enzymatic mechanisms underlying lignin degradation remain
uncertain, but recent analysis suggests that transgenic poplar with
increased ratios of syringyl to guaiacyl lignin monomers are rela-
tively more resistant to fungal attack (21).

It is generally thought that lignin depolymerization is catalyzed
by an array of oxidative enzymes, especially lignin peroxidase
(LiP), manganese peroxidase (MnP), and versatile peroxidase
(VP). Recent genome investigations reveal that all efficient lignin
degraders possess some combination of these enzymes, all of
which are class II members of the plant-fungal-prokaryotic per-
oxidase superfamily (22, 23). Ligninolytic peroxidases, together
with auxiliary enzymes, have been classified into 10 families (24).
Of these, class II peroxidases (family AA2), various glucose-meth-
anol-choline (GMC) oxidoreductases (AA3), copper radical oxi-
dases (CROs; AA5), benzoquinone reductases (AA6), and the
aforementioned LPMOs (AA9) are expressed in P. chrysosporium
cultures (reviewed in reference 25). Owing to the insolubility of
the substrate, little is known of the influence of native lignin on
gene expression. However, the secretomes of cultures amended
with sulfonated lignin (11) or vanillin (26–28), a probable degra-
dation product, have been reported. Aldehyde dehydrogenases
(AADs), CDH, copper radical oxidases, glutathione transferases,
and benzoquinone reductases, all implicated in transformations
of aromatic metabolites, were identified in these submerged cul-
tures. Characterization of proteins extracted from colonized wood
blocks has been more challenging, but Ravalason and coworkers
successfully identified a copper radical oxidase in P. nigra wood
chips decayed by P. chrysosporium strain CIRM-BRFM41 (18).
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Substrate preference among certain wood decay fungi is well
established (1, 29). Numerous studies involving defined medium
have demonstrated the substantial influence of substrate on P.
chrysosporium gene expression (reviewed in references 30 and 31).
Differential transcriptional regulation and shifting secretome pat-
terns have also been observed in comparisons of defined-medium
cultures to cultures containing a woody substrate (13, 15, 18), and
comparisons of white pine (Pinus strobus) to bigtooth aspen
(Populus grandidentata) also showed significant modulation of
gene expression in response to highly divergent substrates (17). In
this study, we have examined gene expression in hybrid poplar
lines with drastically different lignin compositions, a trait of con-
siderable importance to many industrial processes.

MATERIALS AND METHODS
Culture conditions and characterization. RNA and protein were ob-
tained from P. chrysosporium strain RP78 (Forest Mycology Center, Forest
Products Laboratory) grown in Highley’s basal salt medium (32) contain-
ing 0.5% (wt/vol) glucose (Glc) or Wiley-milled (1-mm mesh) wood. For
each of the three wood samples (parental hybrid clone line P717, trans-
genic line 82, and transgenic line 64) multiple branches were harvested,
debarked, and dried. These samples were derived from independent trees
that were clonally replicated and grown in a greenhouse for 2 years. The
milled material was used as is, i.e., without solvent extraction. Two-liter
Erlenmeyer flasks contained 250 ml of medium and were inoculated with
approximately 107 P. chrysosporium spores scraped from the surface of
YMPG (yeast extract, malt extract, peptone, glucose) agar. Cultures were
incubated for 5 days on a rotary shaker (150 rpm) at 37°C. Carbohydrate
and lignin composition levels of wood samples have been reported previ-
ously (21). Notably, line 64, line 82, and parental line P717 had similar
overall lignin contents but feature approximately 94 mol%, 85 mol%, and
65 mol% syringyl units, respectively.

For RNA, mycelia from triplicate cultures were collected by filtration
through Miracloth (Calbiochem, EMD Biosciences, Gibbstown, NJ),
squeeze dried, and snap-frozen in liquid nitrogen. Pellets were stored at
280°C until use. For mass spectroscopic analysis, culture filtrates were
stored at 220°C before use.
Expression microarrays. P. chrysosporium Roche NimbleGen array

designs are available under platform GPL18011 within the Gene Expres-
sion Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/index.cgi). The
arrays feature 9,927 gene targets and differ from the previously used de-
sign platform GPL8022 (10, 13, 17, 33) by the elimination of repetitive
elements and the addition of 25 open reading frames (protein target iden-
tification [ID] numbers 150002 to 150027).

Total RNA was purified from frozen mycelial pellets, converted to
Cy3-labeled cDNA, hybridized to microarrays, and scanned as described
previously (13). The arrays used in these experiments were scanned on an
Axon 4000B scanner (Molecular Dynamics), and data were extracted us-
ing NimbleScan, version 2.4. Quantile normalization and robust multiar-
ray averaging (RMA) (34) were applied to the raw data using DNASTAR
ArrayStar, version 4 (Madison, WI). Expression levels were based on log2

signals, and significant differences in expression were determined using a
moderated t test (35) with a false discovery rate (FDR) (36) threshold set
at a P value of ,0.05.
Mass spectrometry. Soluble extracellular protein was precipitated

from culture filtrates by direct addition of solid trichloroacetic acid (TCA)
to 10% (wt/vol), and trypsin-generated peptides were analyzed by nano-
liquid chromatography-tandem mass spectrometry (nano-LC-MS/MS)
using an Agilent 1100 Nanoflow system (Agilent, Palo Alto, CA) con-
nected to a hybrid linear trap quadrupole-Orbitrap mass spectrometer
(LTQ-Orbitrap; Thermo Fisher Scientific, San Jose, CA) equipped with a
nanoelectrospray ion source as described previously (13). Using protein
databases for P. chrysosporium (BestModels_2.0 [http://jgi.doe.gov
/whiterot]), the MS/MS spectra were analyzed using an in-house Mascot

search engine (version 2.2.07; Matrix Science, London, United Kingdom).
Mascot searches were done with a fragment ion mass tolerance of 0.6 Da,
parent ion tolerance of 15 ppm, and methionine oxidation as variable
modification. Scaffold (version 4; Proteome Software, Inc., Portland, OR)
was used to validate MS/MS-based peptide and protein identifications.
Protein identifications were accepted if they contained at least two
uniquely identified peptides and if protein probabilities exceeded 95.0%
as determined by the Protein Prophet algorithm (37).

Detailed information on individual gene/protein models can be di-
rectly accessed via the Joint Genome Institute (JGI) genome portal (38).
The protein pages include information from the Gene Ontology (GO)
database for each InterPro domain. Function or putative function was
assigned when determinations were supported by direct experimental ev-
idence or when comparisons to known proteins revealed conserved cata-
lytic features and/or significant alignment scores (bit scores of .150) to
known proteins within the SwissProt database. All other proteins were
designated hypothetical.
Microarray data accession number. The MIAME (minimum infor-

mation about a microarray experiment)-compliant (39) microarray ex-
pression data were deposited in NCBI’s Gene Expression Omnibus under
GEO accession number GSE52922.

RESULTS
Transcriptome analysis revealed 113 genes upregulated on poplar
relative to glucose-grown cultures (Fig. 1). Seventy-nine of these
were upregulated in the parental hybrid, P717, and these included
a wide array of glycoside hydrolases (GHs), oxidoreductases,
transporters, and hypothetical proteins. With exceptions, P. chrys-
osporium gene signal strength on Wiley-milled P717 was positively
correlated (r 5 0.96, n 5 9,927) (see Data Set S1 in the supple-
mental material) with previously reported ball-milled Populus
grandidentata (17). Notable outliers included genes encoding an
endoxylanase (Phach1_7045), two lytic polysaccharide monooxy-
genases (LPMOs; Phach1_41563 and Phach1_41125), and a class
3 lipase (Phach1_2540), all of which exhibited high signal strength
and significant upregulation on P717 relative to P. grandidentata.
Possibly, these differences were influenced by wood composition,
but substrate pretreatment may have also played a role. The
Wiley-milled material used here is more coarsely ground and less

FIG 1 Distribution of 113 genes whose transcripts accumulate .2-fold (P ,
0.05) in poplar relative to glucose medium. Of these, cultures containing high-
syringyl lines 82 and 64 as the sole carbon sources had 11 and 15 genes, respec-
tively, showing no significant increases in the parental line P717. Eight genes
were significantly upregulated in both transgenic lines, but not in P717. De-
tailed results for all genes are available in Data Set S1 in the supplemental
material.
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accessible to enzyme penetration than pulverized ball-milled
wood.

Transcripts for 34 functionally diverse genes accumulated
uniquely in line 82 and/or 64, but not in P717, relative to glucose
(Fig. 1). Of genes upregulated in transgenic material relative to
P717, none showed significant up- or downregulation in line 82.
However, the line containing the highest syringyl lignin content,
line 64, significantly (P , 0.05) induced 11 genes (Table 1). This
group included a flavin-dependent oxidoreductase, formate de-
hydrogenase, formaldehyde dehydrogenase, phenylalanine am-
monia lyase, and several hypothetical proteins. Furthermore, an-
other flavin-dependent oxidoreductase (Phach1_140680) and a
transporter (Phach1_138238) showed significant upregulation in
line 64 relative to line 82.

LC-MS/MS-based secretome analysis unambiguously identi-
fied 793 proteins, each defined by $2 unique peptides. These pro-
teins were broadly categorized as glycoside hydrolases (70 pro-
teins), oxidoreductases (32), auxiliary/other proteins implicated
in lignocellulose degradation (14), peptidases (15), hypotheticals
(343), and miscellaneous (315) (Fig. 2). Peptides corresponding to
high-oxidation-potential peroxidases were not detected, but 18
oxidoreductases were found exclusively in the transgenic lines
(Table 2). All of these proteins could play a direct or indirect role
in the transformation and degradation of lignin metabolites. In-
creased levels of glycoside hydrolases in the transgenic lines (Table
3) likely reflect broad shifts in accessibility of cellulose and hemi-
celluloses. Polysaccharide access might be altered by lowered mo-
lecular weight and increased proportions of b-O-4 bonds associ-
ated with lignins derived from high levels of syringyl monomer
(40).

DISCUSSION
Our results demonstrate the influence of lignin composition on P.
chrysosporium gene expression. In particular, secretome and tran-

scriptome profiles highlight a role for various proteins in response
to an increased ratio of syringyl/guaiacyl monomers in the lignin
polymer. It is unclear whether similar expression patterns would
be observed in solid wood under natural conditions. Presumably,
Wiley mill grinding or other commercial pretreatments enhance
enzyme accessibility.

Transcript accumulation in media containing ground trans-
genic lines as sole carbon sources identified several regulated
genes, including the flavin-binding oxidoreductases Phach1_7965
and Phach1_140680. Featuring InterPro domain IPR003042
(aromatic-ring hydroxylases), these putative monooxygenases are
closely related (66% identity) and feature predicted secretion sig-
nals (Table 1; see also Data Set S1 in the supplemental material).
Given their structure and relatively high transcript accumulation
in the high-syringyl lignin substrate (line 64), it seems probable
that these enzymes are involved in the degradation of aromatic
metabolites. Upregulation of formate dehydrogenase genes en-
coding Phach1_140211 (Table 1) and Phach1_133757 (Table 2)
may be in response to formate accumulation via the glyoxylate
cycle although simultaneous increases in the expression of oxalate
decarboxylase were not observed as they were in earlier studies of
P. chrysosporium (17) and Dichomitus squalens (41). Nevertheless,
relatively high protein levels (exponentially modified protein
abundance index [emPAI] value of 1.04) (see Data Set S1 in the
supplemental material) of an oxalate decarboxylase (Phach1_
12177) were detected in the parental line P7171. Formate can also
be generated by the successive activities of methanol oxidase
(Phach1_126879) and formaldehyde dehydrogenase (Phach1_
127127) (42). The latter Zn-dependent enzyme is upregulated in
line 64 relative to P717 (Table 1) while the former is highly ex-
pressed in all media (see Data Set S1). Glutamate dehydrogenase
Phach1_133063 and ABC transporter Phach1_138238 responses
are likely induced by H2O2 and lignin-derived metabolites (43),

TABLE 1 P. chrysosporium genes upregulated in colonization of transgenic poplar line 82 or 64 relative to parental hybrid line P717

Protein
ID no. Putative functiona

Microarray signal
(log2) Relative expression in:c

LC-MS/MS data
(emPAI)d

P717b 82 64

82 vs P717 64 vs P717 64 vs 82

P717 82 64
Transcript
ratio P value

Transcript
ratio P value

Transcript
ratio P value

133063 Glutamate decarboxylase 1,548 1,542 6,105 1.00 0.954 3.94 0.014 3.96 0.027
138813 GH15 1,845 2,555 6,939 1.38 0.141 3.76 0.014 2.72 0.045 1.03 0.70 0.97
5249 Hypothetical 1,122 1,410 4,179 1.26 0.163 3.72 0.030 2.96 0.047
140211 Formate dehydrogenase 1,621 2,327 5,249 1.44 0.226 3.24 0.034 2.26 0.078 0.43 0.72 0.79
124439 PAL 2,984 4,571 9,594 1.53 0.217 3.22 0.041 2.10 0.097
7965 FAD-OR 1,559 1,055 4,715 0.68 0.054 3.02 0.007 4.47 0.004 0.07 0.00 0.12
8072 GH55 2,118 2,887 6,157 1.36 0.281 2.91 0.036 2.13 0.067 0.45 0.61 0.38
6166 Hypothetical 1,207 2,970 2,944 2.46 0.055 2.44 0.036 0.99 0.942
5352 Hypothetical 4,659 4,731 10,046 1.02 0.942 2.16 0.022 2.12 0.032
127127 Formaldehyde dehydrogenase 903 985 1,906 1.09 0.373 2.11 0.015 1.93 0.041 0.23 0.00 0.28
140079 Hypothetical 2,569 3,543 5,326 1.38 0.362 2.07 0.036 1.50 0.219 0.84 0.42 0.60
140680 FAD-OR 2,543 1,808 5,006 0.71 0.036 1.97 0.045 2.77 0.041
138238 ABC transporter 9,358 6,505 14,047 0.70 0.2030 1.50 0.0298 2.16 0.034 0.00 0.00 0.07
a GH, glycoside hydrolase; PAL, phenylalanine ammonia lyase; FAD-OR, favin-dependent oxidoreductases similar to salicylate monooxygenase. Hypothetical proteins
Phach1_5249 and Phach1_140079 were detected in previous reports (17), and the latter protein model featured a predicted secretion signal. Transmembrane helices were predicted
for Phach1_5249, Phach1_6166 and Phach1_5352.
b P717, wild-type parental hybrid.
c Shading highlights significant upregulation (.2-fold; P , 0.05).
d emPAI, exponentially modified protein abundance index.
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respectively, in line 64 (Table 1). Transcript accumulation of a
glucoamylase (GH15; Phach1_138813) and a 1,3-b-glucosidase
(GH55; Phach1_8072) cannot be easily explained by the higher
ratio of syringyl/guaiacyl monomers in line 64. Neither starch nor
b-1,3-glucans are significant constituents of mature wood, but the
saplings used here likely contain elevated levels. Moreover, pep-
tides corresponding to GH15s and GH55s have been detected
when various white rot fungi, including P. chrysosporium, were
cultivated on mature aspen sapwood (22, 23).

In addition to their regulation, genes featuring high transcript
levels undoubtedly play an important role in lignocellulose deg-
radation. For examples, genes encoding CBH2 (GH6; Phlgi_
133052), CDH (AA3_1; Phlbi_11098), an LPMO (AA9; formerly
GH61; Phlgi_129325), and endoglucanase EG38 (GH5; Phlbi_
6458) were among the 30 highest microarray signals observed on
the parental line P717 (see Data Set S1 in the supplemental mate-
rial). Along these lines, the aforementioned Phlgi_126879 accu-
mulated at very high levels in all four media. A probable ortholog
of Gloeophyllum trabeum methanol oxidase (89% identical) (44),
the substrate (methanol) can be produced by lignin demethoxy-
lation, a process common to a wide range of wood decay fungi (for
example, see reference 45).

In addition to transcript analysis, protein identifications
support an important role for many oxidoreductases. Among the
more interesting proteins detected by LC-MS/MS, two additional
flavin-containing monooxygenases, Phach1_1321 and Phach1_
132896, were identified in filtrates of cultures containing line 82
and line 64, respectively (Table 2). The Phach1_1321 protein is
orthologous to P. chrysosporium MO1 (PcFMO1), a flavin mono-
oxygenase previously identified in P. chrysosporium strain ME446

cultures supplemented with vanillin (28). A closely related ME446
gene, PcFMO2, corresponds to Phach1_137230 in the RP78 ge-
nome. Although we could not detect Phach1_137230 peptides in
culture filtrates, its transcripts are relatively high in line 82 relative
to Glc medium (2.1-fold; P , 0.02) (see Data Set S1 in the supple-
mental material). Interestingly, these flavin monooxygenases
were, like the aforementioned Phach1_1321 and Phach1_132896,
part of a family of .34 related genes, 16 of which are located on
scaffold 15. In fact, eight related genes were localized to a 32-kb
region which contains Phach1_140680, Phach1_7965, Phach1_
1321, and Phach1_32896. Clustering of functionally related genes
in P. chrysosporium had been previously observed for LiP- and
CRO-encoding genes (46, 47), but regulation is not strictly coor-
dinated among these tightly linked sequences. Thus, a putative
flavin-containing monooxygenase (Phlgi_6283) is 89% identical
to Phlgi_132896 and similarly expressed on line 64 (Table 2), and
yet it resides on a separate scaffold.

Unambiguous protein identifications coupled with high tran-
script levels strongly support important roles for certain genes.
For example, flavin adenine dinucleotide (FAD)-dependent oxi-
doreductases Phach1_7965 and Phach1_132896, alcohol dehy-
drogenase Phach1_5793, and benzoquinone reductase Phach1_
10307 are highly expressed during growth on line 64 (Table 2).
The last enzyme has been implicated in quinone cycling (48), and
vanillin-induced upregulation has been observed (26). In this
connection, increased transcript levels of phenylalanine ammo-
nium lyase (Table 1) could impart enhanced biogenesis of veratryl
alcohol and related aromatic compounds (49). A metabolite of P.
chrysosporium, veratryl alcohol, has been implicated in ligninoly-
sis as a diffusible oxidant or LiP stabilizer (30). We also observed

FIG 2 Distribution of proteins in broad functional categories. Miscellaneous proteins include those without secretion signals and homologous to abundant,
known, intracellular proteins involved in central metabolism and protein synthesis. These are likely the result of hyphal lysis during cultivation. Detailed listings
of all detected proteins are available in Data Set S1 in the supplemental material.
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high expression of alcohol dehydrogenases Phach1_10221 and
Phach1_5793, both of which may participate in the reductive de-
toxification of various lignin-derived aldehydes (42). Also consis-
tent with an active ligninolytic system, a GMC oxidoreductase
(Phach1_9149) with similarity to Aspergillus niger glucose oxidase
(22% identity) was detected in cultures containing line 64. This
enzyme generates glucono-1,5-lactone and H2O2 from glucose.
Possibly, catalases Phach1_127288 and Phach1_128306 serve to
modulate toxic accumulations of peroxide which would otherwise
impact the integrity of membranes.

Impressive levels of LPMO (Phach1_31049) were detected
(Table 3). This metallo-monooxygenase boosts cellulose degrada-
tion (5–7, 50), and recent investigations have demonstrated
LPMO activity on hemicellulose (8). All cultures also featured
substantial protein and transcript levels for CDH and aldose epi-
merase (ALE1). Cellobiose b-anomer, the preferred CDH sub-
strate (51), may be generated by ALE1. CDH and CBHs were
previously identified in P. chrysosporium cultures (9, 17, 33, 52),
and upregulated LPMOs (Table 3; see also Data Set S1 in the
supplemental material) increase oxidative degradation of cellu-
lose and xyloglucans.

Determining the precise role of these genes in lignocellulose
degradation remains a task for future research, and elucidating the
roles of the many hypothetical proteins is particularly challenging.
For example, 343 of the 793 proteins identified are completely
uncharacterized (Fig. 2). Similarly, 39 of the 113 upregulated pro-
teins are hypothetical. Transcripts corresponding to Phach1_
5249, Phach1_6166, Phach1_5352, and Phach1_140079 accumu-
lated in transgenic line 64 relative to line P717. These four
unlinked genes had little in common (,21% identity) except for
the presence of one or more transmembrane helices in Phach1_
5249, Phach1_6166, and Phach1_5352. The Phach1_5249 and
Phach1_5352 transcript levels were also significantly higher in line
64 than in line 82, further demonstrating a response to high
syringyl lignin content. Interestingly, four Phach1_5352 ho-
mologs were clustered within a 12-kb region of scaffold 27, but all
were constitutively expressed at relatively low levels (see Data Set
S1). Based on transcript levels and protein identifications, these
genes are potentially important in lignocellulose degradation, but
the data should be cautiously interpreted. Regulated expression
and secretion do not guarantee full activity. Along these lines, the
absence of detectable peptides must be regarded as equivocal

TABLE 2 P. chrysosporium oxidoreductases upregulated in lines 82 and/or 64 but not P717a

Protein distribution and
ID no. Putative function Domainb Comment (reference)

Microarray signal
(log2)

LC-MS/MS data
(emPAI)P717 82 64

Proteins in filtrates of
line 82

6771 Oxidoreductase PF01408 1482 1382 1289 0.119
8211 GMC oxidoreductase AA3_2 416 425 429 0.100
10221 Alcohol dehydrogenase PF00248 3053 3060 4084 0.234
9149 GMC oxidoreductase, possible

glucose oxidase
IPR001395 Model 5= region needs

editing
2863 3010 3117 0.093

1321 Flavin-containing monooxygenasec PF01494, PF01360 ;PcFMO1 (28) 11700 12117 10235 0.025

Proteins in filtrates of lines
82 and 64

133289 Aldehyde dehydrogenase PF00171 438 456 564 0.154, 0.377d

134181 Aryl-alcohol dehydrogenase PF00248 68% identity to
Phach1_11055 (53)

378 363 420 0.126, 0.252d

3442 Oxidoreductase PF00107 Model 3= terminus
needs editing

2071 2018 2162 0.054, 0.050d

Proteins in filtrates of
line 64

133757 Formate dehydrogenase PF00389, PF02826 463 471 513 0.365
6283 Flavin-containing monooxygenase PF00743, PF13738 1268 1293 1557 0.151
127288 Catalase PF00199 1728 1689 1755 0.090
7965 FAD-dependent oxidoreductase PF01360 Related to salicylate

hydroxylase
1559 1055 4715 0.116

7129 Alcohol dehydrogenase PF00107 529 586 717 0.298
1173 Oxidoreductase PF01408 358 377 384 0.120
10307 1,4-benzoquinone reductase AA6 1214 1091 1203 0.249
5793 Alcohol dehydrogenase PF00107 1287 1370 1899 0.369
1056 Oxidoreductase PF00107 2382 2684 3110 0.133
132896 Flavin-containing monooxygenase PF00743, PF13738 1371 1486 2073 0.079
128306 Catalase PF00199 1211 1148 1210 0.081

a The Venn diagram in Fig. 2 shows the distribution of all detected proteins. Only proteins with $2 unique peptides are considered significant.
b Pfam (http://pfam.sanger.ac.uk/), auxiliary activity families (http://www.cazy.org/Auxiliary-Activities.html), or InterPro domains (https://www.ebi.ac.uk/interpro/) are listed. See
Data Set S1 in the supplemental material or individual protein pages on the JGI portal (http://genome.jgi-psf.org/Phchr1/Phchr1.home.html) for additional information.
c Gene model extends beyond likely 3= terminus; corrected gene equivalent to vanillin-induced protein PcFMO1 of P. chrysosporium strain ME446.
d emPAI values for line 82 and line 64, respectively.
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without information related to turnover rates, substrate binding
characteristics, and the frequency of trypsin cleavage sites. Never-
theless, high transcript levels associated with extracellular pep-
tides warrant further examination of temporal expression pat-
terns and biochemical properties.

Conversion efficiency barriers substantially complicate enzy-
matic “deconstruction” of forest biomass. Much effort is currently
focused on improving wood utilization, particularly through
identification/improvement of enzyme systems, genetic altera-
tions in plant cell wall composition, and development of pretreat-
ment processes. Our results demonstrate the importance of host
genotype and suggest that commercial enzyme mixtures might be
improved by tailoring enzyme components to specific feedstocks.
P. chrysosporium provides a uniquely suited model system because
it expresses all enzymatic and nonenzymatic components neces-
sary to disassemble wood into useful monomers. The information
gained may allow the further development of enzymatic systems
for biomass treatment and help guide Populus breeding programs.
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